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Abstract

Totally geodesic null hypersurfaces have been widely used as models of time-independent event and isolated black
hole horizons. However, in reality black hole being surrounded by a local mass distribution there is significant
difference in the structure of the surrounding region of isolated black holes. In this paper, we use metric conformal
symmetry which provides a class of a family of totally umbilical null hypersurfaces (Theorem 4), supported by a
physical model and an example of time-dependent evolving null horizons (see Definition 6) conformally related to
an isolated black hole. We establish an interrelation between the spacelike dynamical horizons (see Definition 7),
isolated and evolving null horizons. Finally we propose further study on null geometry and physics of the surface
closer to an isolated horizon.
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1. Introduction

Considerable work has been done on time-independent isolated black hole physics of asymptotically flat space-
times which is still an active area of research. Such isolated black holes deal with the concept of an event and
isolated horizons briefly explained as follows:
Event horizons. A boundary of a spacetime is called an event horizon beyond which events cannot affect the
observer. An event horizon is intrinsically a global concept since its definition requires the knowledge of the whole
spacetime to determine whether null geodesics can reach null infinity. For basic information on event horizons we
refer (Hawking, 1972) and three papers of (Há j́ičeke, 1973-74).
However, in practice an event horizon is generally not very useful since to actually locate a black hole one needs
to know the full spacetime metric up to the infinite future. Moreover, even if one locates the event horizon, using
it to calculate the physical parameters is extremely difficult. Therefore, attempts have been made to find a quasi-
local concept of a horizon which requires only minimum number of conditions to detect a black hole and study
its properties. For this purpose, (Asktekar et al., 1999) introduced following three notions of “Isolated Horizons”.
Let (H, q) be a null hypersurface of a 4-dimensional spacetime (M, g) where q is the degenerate metric induced by
the metric g of M. We assume that the null normal,say ℓ, is null geodesic future directed and is defined in some
subset of M around H. This will permit to well-define the spacetime covarient derivative ∇ℓ where ∇ denotes the
Levi-Civita connection on M. The expansion θ(ℓ) is defined by θ(ℓ) = qab∇aℓb and the vorticity-free Raychaudhuri
equation is

d(θ(ℓ))
ds

= −Rabℓ
aℓb − σabσ

ab − θ
2

2
,

where σab, s and Rab are shear tensor, a pseudo-arc parameter and Ricci tensor, respectively.

Definition 1. A null hypersurface (H, q) of a 4-dimensional spacetime (M, g) is called a non-expanding horizon
(NEH) if

(1) H has a topology R × S 2,

(2) Any null normal ℓa of H has vanishing expansion, θ(ℓ) = 0.

(3) All equations of motion hold at H and the stress energy tensor Tab is such that −T a
b ℓ

b is future-causal for any
future directed null normal ℓa,
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The condition (1) implies that marginally trapped surfaces (Hayward, 1994) are related to a black hole spacetime.
The conditions (2) and (3) imply from the Raychaudhuri equation that £ℓq = 0 on H, which further implies that
the metric q is time-independent and H is totally geodesic in M. In general, there does not exist a unique induced
connection on H due to degenerate q. However, on an NEH, the property £ℓq = 0 implies that the spacetime
connection ∇ induces a unique (torsion-free) connection, sayD, on H which is compatible with q. We say that two
null normals ℓ and ℓ̄ belong to the same equivalence class [ℓ] if ℓ = cℓ̄ for some positive constant c.

Definition 2. The pair (H, [ℓ]) is called a weakly isolated horizon (WIH) if it is a NEH and each normal ℓ ∈ [ℓ]
satisfies (£ℓDa −Da£ℓ)ℓa = 0, i. e.,Daℓ

b is also time-independent.

Definition 3. A WIH (H, q, [ℓ]) is called an Isolated Horizon (IH) if the full connection D is time-independent,
that is, if (£ℓDa −Da£ℓ)V = 0 for arbitrary vector fields Va tangent to H.

For information and examples on isolated horizons we refer (Lewandowski, 2000), (Asktekar-Krishnan, 2002-
3) , (Gourgoulhon-Jaramillo, 2006) and several others listed in these papers. However, in reality the present day
research indicates that black hole has a cosmological background or it is surrounded by a local mass distribution.
Therefore, there is significant difference in the structure and properties of the surrounding dynamical region of
isolated black holes. The purpose of this paper is to use a conformal symmetry on an isolated black hole spacetime
(M, g) which brings in a family of totally umbilical null hypersurfaces representing time-dependent null horizons
near an isolated black hole. We also explain how this family of null horizons may evolve (for some cases) into a
black hole isolated horizon.

2. Method

Let (M, g) be a spacetime with a conformal symmetry defined by a map ϕ : M → M such that the

g(ϕ⋆X, ϕ⋆Y) = Gs(X,Y) = eΩs g(X,Y), ∀X,Y ∈ T M (1)

where ϕ⋆ is the differential (tangent) map of ϕ and Ωs is a scalar function on M for some parameter value of s.
The set of all conformal maps, satisfying (1), form a group of conformal motions under composition of mappings.
Let each Vs be a smooth vector field on M and U denote a neighborhood of each p ∈ M with local coordinate
system. Let the integral curve of each Vs, through any point p in U, be defined on an open interval (−ϵ, ϵ) for
ϵ > 0. For each t in this interval we define a map ϕt onU such that for p inU, ϕt(p) is that point with parameter
value t on the integral curve of Vs through p. Then, each Vs generates a local 1-parameter group of transformations
ϕt : xa → xa + tVa

s . If ϕt satisfies the conformal symmetry equation (1), then, we say that Vs is a conformal vector
field, briefly denoted by CKV. In local coordinates, Vs conformal implies that

∂c (xa + tVa
s ) ∂d (xb + tVb

s ) Gsab
(x + tVs) = eΩs gcd(x).

Expanding Gsab
(x + tVs) up to first order in t, and then using the Lie derivative operator £Vs , we get

t(£VsGs) = (eΩs − 1)g.

As t is small, so is Ωs. Setting Ωs = tσs and expanding etσs up to first order in t, we get

£VsGs = σsGs, Ωs = tσs. (2)

Above equations are well-known as conformal Killing equations. In particular, Vs is homothetic or a Killing vector
field according as σs is a no-zero constant or zero. Let M be the space of all smooth Lorentzian metrics on M.
Consider a family C = (Gs) ⊂ M whose each member is conformally related to the metric g of (M, g) with
conformal symmetry defined by (1). Denote by

F = {(M, (Gs)) : Gs = eΩs g ∈ C} (3)

a family of spacetimes conformally related to (M, g) and Gs ∈ (Gs) for some parameter value of s.

3 Results

LetS = ((Hu), (hu), (ℓu)) be a family of null hypersurfaces of (M, (Gs)) where u is corresponding parameter induced
by the parameter s. For simplicity, we consider (H, h, ℓ) a member of the family S for some parameter value of u.
The “bending” of H in M is described by the Weingarten map:

Wℓ : TpH → TpH, X → ∇Xℓ.
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Wℓ associates each X of H the variation of ℓ along X, with respect to the spacetime connection ∇. The second
fundamental form, say B, of H is the symmetric bilinear form and is related to theWℓ by

B(X, Y) = h(WℓX,Y) = h(∇Xℓ, Y). (4)

(H, h) is totally umbilical in M if and only if there is a smooth function f on H such that

B(X,Y) = f h(X,Y), ∀X, Y ∈ T H. (5)

In particular, H or a portion of H is called totally geodesic if and only if B vanishes, i.e., if and only if f vanishes
on H or some portion of H.

Theorem 4. Let S = ((Hu), (hu), (ℓu)) be a family of null hypersurfaces of a family F = (M, (Gs)) of spacetimes
defined by (3) whose each memeber is conformally related to an isolated black hole spacetime (M, g), with an
isolated horizon (H, q) as defined by (1), which lies to the future of each (Hu, hu). Then,

(a) there exists a family of maps ϕu : ((Hu), (hu), (ℓu))→ (H, q) such that each metric hu transforms to hu = eΩu q,
where Ωu is the induced conformal factor of Ωs.

(b) Each (Hu, hu) is totally umbilical in (M, (Gs)).

(c) (Hu, hu) may coincide with (H, q) on a portion of Hu only if Ωu vanishes on that portion and, then, this
common null hypersurface (H, q) has null mean curvature θ = 0.

Proof. Part (a) of the theorem follows easily since conformal transformations preserve causal structure and, there-
fore, each member of S is conformal to (H, q), with the induced conformal factor Ωu for some value of u. To prove
(b) we observe that, as explained in Section 2, the conformal structure in (a) will induce a family of null conformal
Killing vector (CKV) fields, say (ℓu) of the family (Hu) such that for each value of u

£ℓu hu(X,Y) == σuhu(X,Y), Ωu = tσu, ∀X,Y ∈ T Hu. (6)

Express the left side of above equation in the form £ℓu hu(X,Y) = hu(∇Xℓu,Y) + hu(∇Yℓu, X). Then, using (4) and
(5) with B(X,Y) symmetric it follows that

B(X,Y) =
1
2

£ℓhu(X,Y) =
1
2
σuhu(X,Y), ∀X,Y ∈ T H,

which is well defined up to conformal rescaling (related to the choice of ℓu). Thus, each (Hu, hu) is totally umbilical
, which proves (b). For the case (c) observe that (Hu, hu) approaches (H, q) for some value of u only if hu = q for
that value of u, which further means that only if Ωu vanishes for that value of u. This proves the first part of (c).
Now, as per definition of isolated horizons, (Hu, hu) = (H, q) is totally geodesic. Moreover, It is well-known that
any null hypersurface of a semi-Riemannian manifold has zero mean curvature if and only if it is totally geodesic,
which proves (c). �

Now we address the question of how the Theorem 4 can be used to show the existence of a family of time-dependent
null horizons near an isolated black hole. For this purpose we recall that (Perlick, 2005) proved following general
result for a totally umbilical submanifold (also holds for totally geodesic case) H of a semi-Riemannian manifold
M.
“A null geodesic vector field of M that starts tangential to H remains within H for some parameter interval around
the starting point”.
Above result satisfies a requirement for the existence of a null horizon in relativity. Since we assume that each
null normal ℓu of the family of hypersurfaces S is null geodesic, using above result of (Perlick, 2005) we state the
following corollary as a physical consequence of the Theorem 4 (proof is easy).

Corollary 5. Let (M, g) be a null geodesically complete spacetime obeying the null energy condition Ric(X, X) ≥ 0
for all null vectors X and the hypothesis of Theorem 4 holds. Then, each null geodesic vector ℓu of S is contained
in its respective smooth totally umbilical null hypersurface (Hu, ℓu) of (M,Gs) In particular, this property will also
hold for the totally geodesic hypersurface (H, q) of (M, g) .
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In support of Theorem 4, we now present following physical model and an example.

Physical Model. In two recent papers of (Duggal, 2012, 2014) a new class of null hypersurfaces of a spacetime
was studied using the following definition:

Definition 6. A null hypersurface (H, h, ℓ) of a spacetime (M, g) is called an Evolving Null Horizon, briefly denoted
by (ENH), if

(i) H is totally umbilical in (M, g) and may include a totally geodesic portion.

(ii) All equations of motion hold at H and energy tensor Ti j is such that T a
b ℓ

b is future-causal for any future
directed null normal ℓ.

Comparing the two conditions of above definition with Theorem 4, we notice that the first part of condition (i) is
same as the conclusion (2) of Theoren 4 and for the second part we first observe that the energy condition of (ii)
requires Rabℓ

aℓb non-negative for any ℓ, which implies from page 95 of (Hawking & Ellis, 1973) that θ(ℓ) monoton-
ically decreases in time along ℓ, that is, M obeys the null convergence condition, which further means that the null
hypersurface (H, h) is time-dependent in the region where θ(ℓ) is non-zero and may evolve into a time-independent
totally geodesic hypersurface as a model of an isolated horizon. Thus, above two conditions of the Definition 6
clearly show that there exists a Physical Model of a class S = ((Hu), (hu), (ℓu)) of a family of totally umbilical null
hypersurfaces of a family F = (M, (Gs)), satisfying the hypothesis and three conclusions of Theorem 4, such that
its each member is an evolving null horizon(ENH) which may evolve into an isolated horizon. Simple example is
a family of null cones non of which evolves into an isolated horizon. We refer (Duggal, 2012, 2014, 2015) for this
and some more examples with details on the geometry and physics of ENHs.

Physical example. To construct an example we first recall that (Asktekar-Krishnan, 2003) studied the following
quasi-local concept of dynamical horizons (briefly denoted by DH) which model the present day evolving black
holes and their asymptotic states are isolated horizons.

Definition 7. A smooth, 3-dimensional spacelike submanifold (possibly with boundary) Σ of a spacetime is said to
be a dynamical horizon (DH) if it can be foliated by a family of closed 2-manifolds such that

1. on each leaf L its future directed null normal ℓ has zero expansion, θ(ℓ) = 0,

2. and the other null normal, k, has negative expansion θ(k) < 0.

Above definition requires that Σ be spacelike except for a special case in which portions of marginally trapped
surfaces lie on a spacelike horizon and the remainder on a null horizon. Recall that the concept of marginally
trapped surfaces was first introduced by (Hayward, 1994) as an attempt to describe the surface of an evolving
black hole. In the null case, Σ reaches equilibrium for which the shear and the matter flux vanish and this portion
is represented by a weakly isolated horizon. Since in this paper we only focus on null horizons, we refer(Asktekar-
Krishnan, 2003) for details on DHs and their properties.
Here, in order to construct a new physical example of an ENH satisfying the three conclusions of Theorem 4, we
use the following Vaidya metric of a spacetime (M, g) which is an explicit example of dynamical horizons with
their equilibrium states-the weakly isolated horizons (WIS).
Let (v, r, θ, ϕ) be the Eddington-Frinkelstein coordinates (Hawking-Ellis, 1973) of the metric g given by

gab = −
(
1 − 2Gm(v)

r

)
∇av∇bv + 2∇(a∇b)r

+r2
(
∇aθ∇bθ + sin2 θ∇aϕ∇bϕ

)
. (7)

Using the notations of (Asktekar-Krishnan, 2003), we assume the Einstein field equations

Rab −
1
2

Rgab = 8πGTab,

where m(v) is any smooth non-decreasing function of v and the stress energy tensor is

Tab =
ṁ

4πr2∇av∇bv, ṁ = dm/dv.
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Tab satisfies the dominant energy condition if ṁ ≥ 0 and vanishes if ṁ = 0. There exist metric 2-spheres defined
by v = constant and r = constant. One can calculate the outgoing and ingoing null normals to these 2-spheres and,
in particular, the expansion of the outgoing null normal ℓ is given by

θ(ℓ) =
r − 2Gm(v)

r
.

Thus, it is easy to see that the only spherically symmetric marginally trapped surfaces are the 2-spheres v =
constant and r = 2Gm(v). For this example (Asktekar-Krishnan, 2003) have shown that the hypersurface Σ given
by r = 2Gm(v) with dm/dv > 0 is a dynamical horizon (DH) and if dm/dv = 0, then, part of Σ evolves into a
weakly isolated horizon which (using our notations) we denote by (H, q) such that its induced degenerate metric q
is given by

qab = 4 (Gm(v))2
(
∇aθ∇bθ + sin2 θ∇aϕ∇bϕ

)
, dm/dv = 0. (8)

Now as explained in section 2, we set up a conformal map ϕ : M → M satisfying (1) to get a family F =
{(M, (Gs)) : Gs = eΩs g ∈ C} of spacetimes conformally related to the spacetime (M, g) with Vaidya metric (7)
along with a weakly isolated horizon (H, q). Thus, the hypothesis of Theorem 4 holds and, therefore, its three con-
clusions are satisfied. Consequently, as explained before, there exists a family of evolving null horizons with their
equilibrium states-the weakly isolated horizons of the spacetime (M, g) with Vadiya metric (7), which completes
this physical example.

4. Discussion

We first recall that for more than 50 years the research on black hole physics was limited to time-independent event
and isolated horizons until first attempt on time-dependent horizons was made by (Hayward, 1994) describing
the geometry of the surface of dynamical black hole by using the following definition of future, outer, trapping
horizons.

Definition 8.A future, outer, trapped horizon (FOTH) is a three manifold Σ, foliated by family of closed 2-surfaces
such that (i) one of its future directed null normal, say ℓ, has zero expansion, θ(ℓ) = 0; (ii) the other null normal, k,
has negative expansion θ(k) < 0 and (iii) the directional derivative of θ(ℓ) along k is negative; £nθ(ℓ) < 0.

Σ is either spacelike or null (at the equilibrium state of spacetime) for which θ(k) = 0 and £kθ(ℓ) = 0 He derived
following general laws of black hole dynamics:

(a) Zeroth law. The total trapping gravity of a compact outer marginal surface has an upper bound, attained if
and only if the trapping gravity is constant.

(b) First law. The variation of the area form along an outer trapping horizon is determined by the trapping
gravity and an energy flux.

Then (Ashtekar-Krishnan, 2003) introduced the concept of dynamical horizons(DH)(see Definition 7) and ob-
tained the expressions of fluxes of energy and angular momentum carried by gravitational waves across DHs and
a generalization of the first and the second laws of mechanics. Overall their work has provided a new perspective
covering quantum gravity, numerical relativity and gravitational wave phenomenology and much more. However,
their definition requires that DH is spacelike and is time-independent null horizon only at the equilibrium state of a
spacetime. Since then some researchers have published papers on time-dependent horizons which are always null
geodesic hypersurfaces of a spacetime. For example, we refer two papers each of(Sultana-Dyer, 2004, 2005) and
(Duggal, 2012, 2014) and more referred therein.
We highlight that our approach in this paper of using conformal symmetry and proving Theorem 4 is an important
step forward towards the existence of time-dependent null horizons near an isolated horizon, supported by a phys-
ical example. We also mention that the physical use of research on time-dependent null horizons, including our
approach in this paper, may have connection (though it is early to be sure) with the latest LIGO [Laser Interfer-
ometer Gavitational-Waves Observatory] experiment (as per Press Release of February 11, 2016) confirming the
presence of gravitational waves produced during the final fraction of a second of the merger of two black holes
into a single massive spinning black hole. Thus, this latest LIGO experiment strengthens the ongoing research on
time-dependent null horizons, in particular, near such spinning black holes surrounded with gravitational waves.
For information on LIGO via video one may try: http://mediaassets.caltech.edu/gwave
Finally, our paper has opened the possibility of working on interrelated geometries of dynamical, isolated and
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evolving null horizons. Precisely, we have the following relationship:

(M, g)⇒ Spacelike(DH)⇒ Null(IH)⇐ Null(ENH)⇐ conformal symmetry((M, (Gs)) .

Based on above relation we propose further work on null version of spacelike results proved using DHs.
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Há j́iček, P. (1974). Can outside fields destroy black holes? J. Math. Phys., 15, 1554-1558.
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