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Abstract

A unique hyperbolic geometry paradigm requires suspending the Relativistic principle that absolute velocity is
unmeasurable. The idea that of two observers each sees the same constant velocity, therefore there is no absolute
velocity, is true only because Relativity uses a particular Lorentz geometry. Our mathematical geometry constructs
circle and hyperbola vectors with hyperbolic terms in an original formulation of complex numbers. We use a point
on a hyperbola as a frame of reference. A theory of time is given. The physical laws of motion by Galileo, Newton
and Einstein are forged using the absolute velocity and the precondition to electromagnetic velocity. The field of
real and fictitious force accelerations is established. We utilize Galilean Invariance to measure absolute velocity.
An experiment exemplifies the math from the Earth’s frame of reference. But Relativity is based on local Lorentz
geometry. We discover a possible dark energy and gravitational accelerations and a geometry of gravitational
collapse.

Keywords: acceleration, angle, coordinate, time, trigonometry, velocity

1. Introduction

Conventional trigonometry defines coordinates on a circle as:

sin θ =
y
r

cos θ =
x
r

tan θ =
y
x

csc θ =
r
y

sec θ =
r
x

cot θ =
x
y

where r = (x2 + y2)1/2. Leonhard Euler’s (1707–1783) formula

z = reiθ = r cos θ + ir sin θ = x + iy (1)

regarding the vector z of length (Marsden, 1999)

|z| = (x2 + y2)1/2

revealed the existence of a profound relationship between complex numbers and trigonometric functions. Techno-
logical numerical techniques, like those on a scientific pocket calculator, contrive a trigonometry with hyperbolic
coordinates that we can now formulate.

To construct hyperbolic geometry coordinates, we need to devise a whole new complex variables, one not based on
circular trigonometry. After rephrasing vectors, we describe how the new complex variables shape up. We apply
our hyperbolic trigonometry to electromagnetic velocity. With a precondition velocity, we can derive acceleration.
Our geometry requires us to suspend the Special Relativity physics principle that absolute velocity is unmeasurable.
The idea that a first observer sees velocity ṽ = v′ + v and a second observer, whose velocity relative to the first is
a constant v, sees v′ = ṽ − v, therefore there is no absolute velocity, is contested with our mathematics (Schutz,
2009). Absolute velocity and absolute acceleration are measurable at the specified precondition velocity v of a
moving observer. We find a possible dark energy and gravitational accelerations and a geometry of gravitational
collapse.
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2. Hyperbolic geometry and physics

H.S.M. Coxeter, F.R.S. (1907–2003), explains how the angle of parallelism geodesic B = θ = ∠ABC makes the
asymptotic right triangle ABC (you may draw). Hypotenuse BA = c is of infinite length. The base of the triangle
is BC = a. C = ∠BCA is a right angle. A = ∠BAC is 0. Parallel lines BA and CA meet in infinity (Coxeter, 1978).
Coxeter describes that spherical to hyperbolic triangle transition (Coxeter, 1998) as:

tan a = tan c cos B cos A = cos a sin B tan b = sin a tan B

tanh a = tanh∞ cos B cos 0 = cosh a sin B tanh b = sinh a tan B

tanh a = 1 cos B 1 = cosh a sin B 1 = sinh a tan B

tanh a = cos B sech a = sin B sinh a = cot B.

Figure 1. (a) Above, horizontal, and (b) below, vertical hyperbola and circle coordinate angles, as defined in
hyperbolic trigonometry. Reproduced with kind permission from Spec in Sci and Tech 21, 214, 219 (1999)

Russell Eskew Copyright 1999 Springer, Springer Science and Business Media

To organize this hyperbolic geometry, before B = θ let us first consider the angle ψ lying on a spherical circle with
a horizontal hyperbola x2−y2 = 1 partially used by Christof Gudermann (1798–1852) (Chrystal, 1931). It is called
the gudermannian and defined (Beyer, 1987) for 0 ≤ ψ ≤ π

2 . Figure 1(a) depicts the four coordinates x, y, ψ and α,
which satisfy:

x = secψ = cosh sinh−1 y = cothα y = tanψ = sinh sinh−1 y = cschα
1
x
= cosψ = sech sinh−1 y = tanhα

1
y
= cotψ = csch sinh−1 y = sinhα

x
y
= cscψ = coth sinh−1 y = coshα

y
x
= sinψ = tanh sinh−1 y = sechα,
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when sinh−1 y = a and α = ln 1+v
1−v (see page 87 Theorem 2). We say tanψ = sinh a = sinh sinh−1 y = y because

tan 2ψ
2 =

2 tanψ/2
1−tan2 ψ/2 =

2 tanh a/2
1−tanh2 a/2

= 2 sinh a
2 cosh a

2 = sinh 2 a
2 . But rather than saying tanψ = tanh a, we have

tan 1
2ψ = tanh 1

2 a.

Returning to Coxeter’s (Coxeter, 1989) angle of parallelism B = θ, Fig. 1(b) displays the classical vertical hy-
perbola y2 − x2 = 1 coordinates (Martin, 1972) partially used (Bolyai, 1987) by Nikolai Ivanovic Lobachevskii
(1792–1856) (Lobachevskii, 1840) as shown below:

x = cot θ = sinh sinh−1 x = k(sinh−1 cotΠ(x)) = k(sinh−1 sinh
x
k

) = cschα (2)

1
x
= tan θ= csch sinh−1 x = k(sinh−1 tanΠ(x))= k(sinh−1 csch

x
k

) = sinhα

x
y
= cos θ= tanh sinh−1 x = k(sinh−1 cosΠ(x))= k(sinh−1 tanh

x
k

) = sechα

y = csc θ= cosh sinh−1 x = k(sinh−1 cscΠ(x))= k(sinh−1 cosh
x
k

) = cothα

1
y
= sin θ = sech sinh−1 x = k(sinh−1 sinΠ(x)) = k(sinh−1 sech

x
k

) = tanhα

y
x
= sec θ= coth sinh−1 x = k(sinh−1 secΠ(x))= k(sinh−1 coth

x
k

) = coshα,

when sinh−1 x = ln 1
v = a and α = ln 1+v

1−v (see page 87 Theorem 2). Since cotψ = sinhα = tan θ = cot( π2 − θ) we
relate angles ψ = π

2−θ.We can later demonstrate with x = cot θ = enπ/2. The hyperbolic functions defined by Johann
Heinrich Lambert (1728–1777) stem from sinh x = (ex−e−x)/2. By sinh−1 sinh x = ln(sinh x+

√
(sinh x)2 + 1) = x,

we also have sinh sinh−1 x = sinh a = (esinh−1 x − e− sinh−1 x)/2 = x = cot θ. We have cosh sinh−1 x = cosh a =
(esinh−1 x + e− sinh−1 x)/2 = y =

√
x2 + 1 = csc θ as well. Martin creates the distance scale k = x

a for any concentric
horocircles of distance x in the Bolyai-Lobachevskii plane (Coxeter, 1989). The angle of parallelism (Eskew,
1999) ∠ABC is of Lobachevskii’s θ = 2 tan−1 e−a = 2 tan−1 e− sinh−1 x and of Martin’s critical function Π(x) =
2 tan−1 e−x/k = 2 tan−1 e−(sinh a)/k = 2 tan−1 e−(x)/(x/a).

A point (x, y) on the vertical hyperbola y2 − x2 = 1 is understood as an inertial frame of reference, or observer.
Unaccelerated inertial observers have a constant velocity with respect to any other observer. Within electromagnetic
velocity (Misner, Thorne, & Wheeler, 1970) tan θ = tanhα = β = v/c, we have (i) a precondition velocity
tan 1

2θ = tanh 1
2α = v, (ii) an absolute velocity u = tan θ = (tanhα)(coshα) = sinhα = β/(1 − β2)1/2 = 1

x , because
tan 2 θ

2 =
2 tan θ/2

1−tan2 θ/2 =
2 tanhα/2

1−tanh2 α/2
= (2v)/(1 − v2) = 2 sinh α

2 cosh α
2 = sinh 2α

2 . We also have (iii) a relative velocity

v′ = 1−v and (iv) a relative absolute velocity u′ = 1
y =

1
x+v = sin θ = tanhα. Later we challenge these assumptions.

Time can have an analytic quantity t = esinh−1 x = x + (x2 + 1)1/2 = x + y seconds, which we are saying is about
an event P(t). Distance is 1. We are claiming a precondition velocity v = tan 1

2θ = tanh 1
2α = 1/(x + y) = 1/t

distance/time, where 0 ≤ v ≤ 1. Our math utilizes the complex plane rather than the spacetime diagram. We
advocate stating vt = [1/(x+ y)][x+ y] = 1 distance and acceleration aframe = dv/dt = d

dt t
−1 = −v2 = −[1/(x+ y)]2

distance/time2 when, say, the Earth’s gravitational acceleration is g = −9.81 m/s2.

3. Vectors

Now we will show how hyperbolic coordinates make the vectors of complex numbers. By Eq. (1) the point on a
circle is (x, y) = (r cos θ, r sin θ).

theorem 1 Let (x, y) be a frame of reference point on the vertical hyperbola. Then the hyperbola or circle vectors
can be made of the hyperbola’s x and y rather than the circle’s x and y.
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Proof. If a circle vector z1 = reiθ = r(cos θ + i sin θ) = r( x
y + i 1

y ) where (x, y) is on the Eq. (2) vertical hyperbola
y2 − x2 = 1 then we can write:

z1 = reiθ = r(cos θ + i sin θ) = r(
x
y
+ i

1
y

)

|z1| = ((cos θ)2 + (sin θ)2)1/2 =

( x
y

)2

+

(
1
y

)21/2

= 1

= ((csc θ)2 − (cot θ)2)1/2 = (y2 − x2)1/2 = 1,

rather than Eq. (1). Any point on the complex plane can be reached with reiθ and translated into the frame of
reference (x, y). If a hyperbolic vector z2 = cot θ + i csc θ = x + iy where (x, y) is on the Eq. (2) vertical hyperbola
y2 − x2 = 1 then we denote our unconventional complex number (Marsden, 1999) thusly:

z2 = (a, b) = a + ib = cot θ + i csc θ = x + iy

|z2| = ((a + ib)(a − ib))1/2 = (a2 + b2)1/2

= ((csc θ)2 + (cot θ)2)1/2 = (y2 + x2)1/2,

where r = ((r cos θ)2 + (r sin θ)2)1/2 and |z2| are different. With sec θ = b
a =

y
x , rather than tan θ = y

x , the vector
makes an angle tanφ = y

x along the x-axis. Uniting conventional (Palka, 1991) with our unconventional complex
numbers, we obtain x = |z2| cosφ = cot θ and y = (x2 + 1)1/2 = |z2| sinφ = csc θ. So we have a vector-valued
function f (z) = f (x, y) = f (cot θ, csc θ) = u(x, y) + iv(x, y) for a D f (x, y). Note that sinφ and cosφ have a range of
[−1, 1]. But cot θ has a range of (−∞,∞), with similar csc θ. �

Example: point (x, y) = (x,
√

x2 + 1) = (5,
√

26) obtains circle vector z1 = reiθ = r(cos θ + i sin θ) = r( 5√
26
+ i 1√

26
)

and hyperbola vector z2 = |z2|eiφ =
√

51(cosφ + i sinφ) = cot θ + i csc θ = x + iy = 5 + i
√

26.

4. Applying velocity in complex numbers

Given precondition velocity v and any two complex numbers z = a + ib and u = x + iy where (x, y) is on the
hyperbola y2 − x2 = 1, if u2 = z then by taking the square roots of negative numbers (Marsden, 1999) we acquire:

u2 = a + ib

= (x + iy)(x + iy) = (x2 − y2) + i2xy

= ((sinh ln
1
v

)2 − (cosh ln
1
v

)2) + i2(sinh ln
1
v

)(cosh ln
1
v

)

= ((cot θ)2 − (csc θ)2) + i2(cot θ)(csc θ)

= −1 + i2(sinh ln
1
v

)(cosh ln
1
v

) = −1 + i sinh 2 ln
1
v
.

We also have (Ahlfors, 1970) the double-angle in z = a + ib and circular vector w = reiθ = r(cos θ + i sin θ) for
w2 = z = r2(cos 2θ + i sin 2θ), shown as:

[1]2 =

( x
y

)2

+

(
1
y

)22

= [(cos θ)2 + (sin θ)2]2

=

( x
y

)2

−
(

1
y

)22

+

[
2
(

x
y

) (
1
y

)]2

= [cos 2θ]2 + [sin 2θ]2

= [y2 − x2]2 = [(csc θ)2 − (cot θ)2]2

a2 + b2 = [y2 + x2]2 = [1]2 + (2xy)2 = [−1]2 + (2 cot θ csc θ)2

(a2 + b2)1/2 = y2 + x2 = [(−a + (a2 + b2)1/2)/2] + [(a + (a2 + b2)1/2)/2],

where a = −1 and b = 2xy = 2 cot θ csc θ = sinh 2 ln 1
v . The equation u2 = z solves to ±((x2)1/2 + i(y2)1/2) =

((a + (a2 + b2)1/2)/2)1/2 + i((−a + (a2 + b2)1/2)/2)1/2, depending on ±b. We have z1/2 = (x2)1/2 + 0i if and only if
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z = (x2) + 0i > 0. We have z1/2 = 0 + (y2)1/2i if and only if z = −((−x)2 + 1) + 0i < 0. The two z1/2 coincide if and
only if z = 0 + 0i. Use x = cot θ, y = csc θ rather than x = r cos θ, y = r sin θ.

The vertical hyperbola vector has a power of:

zn = (x + iy)n = (cot θ + i csc θ)n

= (sinh ln
1
v
+ i cosh ln

1
v

)n.

The logarithmic, exponential, and nth root functions appear as:

ln z = ln |z| + iφ = ln((csc θ)2 + (cot θ)2)1/2 + iφ

= ln(y2 + x2)1/2 + iφ;

ez = exeiy = ecot θei csc θ = ecot θ(cos csc θ + i sin csc θ)

= esinh ln 1
v ei cosh ln 1

v = esinh ln 1
v (cos cosh ln

1
v
+ i sin cosh ln

1
v

) = |ez| e
z

|ez| ;

z1/n = e(ln z)/n = e(ln |z|+iφ)/n = e(ln((y2+x2)1/2)+iφ)/n

= e(ln(y2+x2)1/2)/neiφ/n = (y2 + x2)1/2nei(φ+2πk)/n;

z = eln z = eln |z|eiφ = |z| z|z|
= |z|eiφ = (y2 + x2)1/2(cosφ + i sinφ)
= ln ez = ln |ez| + iarg(ez) = ln ex + iy

= x + iy = cot θ + i csc θ,

where θ = sin−1 sech ln 1
v = cos−1 x

y and φ = tan−1 y
x , k = 0, 1, . . . , n − 1.

5. Accelerated frames of reference

Choosing an arbitrary frame of reference point, say (x, y) = (5,
√

26), can quantify physical laws of motion.
Consider Isaac Newton’s (1642–1727) second law of motion,

F = ma = mg = G
mM
r2 ,

about a force F that for gravitation force is exerted on a particle of mass m by one of large mass M, producing an
acceleration a at a distance r on a gravitational field g, computed using the gravitational constant G. F and m are
the same regardless of which of two observers measures them (Schutz, 2009). It applies to the addition of velocities
equation (Gleeson, 2010) of Galileo Galilei (1564–1642)

ṽ = v′ + v. (3)

The quantities are velocity ṽ = 1, its “relative velocity” v′ = ṽ − v = 1 − 1/(x + y), (i.e., the particle’s velocity
with respect to a moving reference frame), and the constant “transport velocity” v = 1

x+y = tan 1
2θ = tanh 1

2α, (i.e.,
the velocity of the moving reference frame). The “absolute velocity” is u = 1

x = tan θ = sinhα, (i.e., a moving
particle’s velocity with respect to a fixed reference frame), where we have:

u = 1/[(1/v) − y)] = 1/[(x + y) − y] = 1/x = (2v)/(1 − v2). (4)

This does not say u = u′ + v, for Eq. (3) and Eq. (4) hold instead (Jackson, 1999). Albert Einstein (1879–1955) and
H. A. Lorentz (1853–1928) replaced Eq. (3) with Eq. (5):

u =
u′ + v

1 + u′v/c2 . (5)
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Like Einstein (Lorentz, 1923) we hold when v = 1
x+y = 1 distance/time is c = 299792458 meters/second, that upon

the photon u′ = 1
y = sin θ = tanhα = c, we have (Einstein, 1957) u = 1/[(1/v)− (1/c)] = 1/[(x+ y)− y] = 1/x = c.

If ṽ has the magnitude c, then so does v′, regardless of v. So too for u and u′.

Galileo showed that different freely falling bodies experience exactly the same acceleration at a given point in
space. At the highest inverse velocity and time, 1/v = t = ∞, a fictitious inertial force Fframe = maframe is added to
the real force F +Fframe = ma′. Hence aframe =

dv
dt =

d
dt t
−1 = −1/t2 = −1/∞2 = 0, relative to an inertial force frame

of reference, is at constant velocity, French (1971) and we have a = a′ − aframe = a′ − 0 = a′. Newton’s second
law, F = ma, may also be written as F = ma′, due to the frame force, Fframe = maframe, that arises simply because
the frame of reference is accelerated relative to an inertial frame. Lorentz used the inertial frame of reference
β = tan θ = tanhα = v/c. But we hereby use v = tan 1

2θ = tanh 1
2α distance/time as precondition (transport)

velocity. Thus we can formulate acceleration (Einstein, 1950).

theorem 2 Let v = tan 1
2θ = tanh tanh−1 v = tanh 1

2 ln 1+v
1−v = tanh 1

2α = 1/t distance/time be the precondition
velocity to β = tan θ = tanhα = v/c. Then the field of accelerations is shown as:

dv
dθ
=

dv
dα
− dv

dt(
1
2
+

v2

2

)
=

(
1
2
− v2

2

)
−

(
−v2

)
a = a′ − aframe

accelabsolute = accelrelative − accelframe.

Proof. The precondition (Anderson, 2005) to velocity is v = tan 1
2θ = tanh tanh−1 v = tanh 1

2 ln 1+v
1−v = tanh 1

2α =

1/(x + y) = 1/t distance/time. The Eq. (2) parameter α = ln 1+v
1−v makes for a unique geometry. With the calculus

notation u the accelerations are the derivatives resulting in trigonometry and algebra:

dv
dθ
=

dv
dt

dt
dθ
=

d
dθ

tan
1
2
θ =

d
dθ

tan u = (sec2 u)
du
dθ
=

1
2

sec2 1
2
θ =

1
2
+

v2

2
dv
dα
=

dv
dt

dt
dα
=

d
dα

tanh
1
2
α =

d
dα

tanh u = (sech2 u)
du
dα
=

1
2

sech2 1
2
α =

1
2
− v2

2
dv
dt
=

dv
dα

dα
dt
=

d
dt

t−1 = − 1
(1/v)2 = −v2

dα
dt
=

dα
dv

dv
dt
=

d
dt

ln
1 + (1/t)
1 − (1/t)

=
1
u

du
dt
=

(
1 − (1/t)
1 + (1/t)

) (
2(1/t2)

(1 − (1/t))2

)
=

2
t2 − 1

dθ
dt
=

dθ
dv

dv
dt
=

d
dt

sin−1 sech ln t =
d
dt

sin−1 u =
u′

√
1 − u2

=
−((sech ln t)(tanh ln t))1/t√

1 − (sech ln t)2
= − 2

t2 + 1
.

The accelerating, noninertial frame of reference becomes:

Fθ = Fα − Fframe

m
dv
dθ
= m

dv
dα
− m

dv
dt
. �

This occurrence means that the field a = a′ − aframe is equivalent to an acceleration of the coordinate frame at that
event point (Dainton, 2001) in space P(t) = P( 1

v ) = 1/(eα/2) = 1/[(1 + v)/(1 − v)]1/2 = P(x + y). When a particle
decelerates from arelative = dv/dα = (1/2 − v2/2) = 1/2 1

t2 relative to a moving reference frame transporting
the particle’s fictitious force from an inertial aframe = dv/dt = −v2 = −1/(1/v)2 = −1/∞2 = 0 1

t2 , the particle
advances a real force acceleration with respect to a fixed observer at aabsolute = dv/dθ = (1/2 + v2/2) = 1/2
1
t2 , from a rest frame velocity of v = 0 1

t . As the fictitious force moving reference frame decelerates from 0 to
aframe = −v2 = −1/(1/v)2 = −1/12 = −1 1

t2 , the arelative of the particle relative to the moving reference frame
approaches 0, and the fixed observer sees the particle’s real force acceleration at aabsolute = (1/2 + v2/2) = 1 1

t2 , up
to a light velocity of v = 1 1

t . Tables 1 and 2 illustrate our coordinates.

87



www.ccsenet.org/apr Applied Physics Research Vol. 8, No. 2; 2016

Table 1. Values of a few coordinates at some points (x, y) on y2 − x2 = 1.

x t = 1/v θ = Π(x) k
cot θ x +

√
x2 + 1 2 tan−1 eln v x/a

0 1.0 π/2 = 1.5707 0
e0 2.414213562 π/4 = 0.7853 1.134592657

eπ/2 9.723795265 0.204960468 2.11488971
eπ 46.30298215 0.043187049 6.033754226

e3π/2 222.6400485 0.008983049 20.59321402
e2π 1070.984245 0.001867441 76.75832388

e5π/2 5151.942712 0.000388203 301.3843059
e3π 24783.29566 0.000080700 1224.722226

e7π/2 119219.483 0.000016776 5099.765758
e4π 573502.6263 0.000003487 21626.07401

e9π/2 2758821.412 0.000000725 93012.91224
e5π 13271248 0.000000151 404583.825

e11π/2 63841038.32 0.000000031 1776134.25
e6π 307105870.8 0.000000007 7857302.779

e13π/2 1477325845 0.000000001 34985338.41
e7π 7106642561 2.81 × 10−10 156642344.9

e15π/2 3.41 × 1010 5.85 × 10−11 704725077.5
e8π 1.64 × 1011 1.21 × 10−11 3183871713

e17π/2 7.91 × 1011 2.52 × 10−12 1.44 × 1010

e9π 3.80 × 1012 5.25 × 10−13 6.56 × 1010

e19π/2 1.83 × 1013 1.09 × 10−13 2.99 × 1011

e10π 8.80 × 1013 2.27 × 10−14 1.37 × 1012

e21π/2 4.23 × 1014 4.72 × 10−15 6.28 × 1012

e11π 2.03 × 1015 9.81 × 10−16 2.89 × 1013

e23π/2 9.80 × 1015 2.04 × 10−16 1.33 × 1014

e12π 4.71 × 1016 4.24 × 10−17 6.14 × 1014

e25π/2 2.26 × 1017 8.81 × 10−18 2.83 × 1015

e13π 1.09 × 1018 1.83 × 10−18 1.31 × 1016

e27π/2 5.24 × 1018 3.80 × 10−19 6.08 × 1016

e14π 2.52 × 1019 7.92 × 10−20 2.82 × 1017

e29π/2 1.21 × 1020 1.64 × 10−20 1.31 × 1018

e15π 5.84 × 1020 3.42 × 10−21 6.11 × 1018

e31π/2 2.81 × 1021 7.11 × 10−22 2.84 × 1019

e16π 1.35 × 1022 1.47 × 10−22 1.32 × 1020

e33π/2 6.50 × 1022 3.07 × 10−23 6.19 × 1020

e17π 3.12 × 1023 6.39 × 10−24 2.89 × 1021

e35π/2 1.50 × 1024 1.32 × 10−24 1.35 × 1022

e25π 2.57 × 1034 7.77 × 10−35 1.62 × 1032

∞ 2∞ 0 ∞

x = cot θ = enπ/2

time = t = 1/v = x + (x2 + 1)1/2 = x + y

a = sinh−1 x =
x
k
= ln

1
v

k =
x
a

∠ABC = θ = 2 tan−1 e−a = cos−1 x
y

= Π(x) = 2 tan−1 e−x/k = 2 tan−1 e−(x)/(x/a)

88



www.ccsenet.org/apr Applied Physics Research Vol. 8, No. 2; 2016

Table 2. Velocity and addition of accelerations.

velocity v absolute accel relative accel -frame accl
1/time aabsolute = dv/dθ arelative = dv/dα −afrm = v2

1.0 1.0 0 1.0
0.414213562 0.5 + 0.08578643 0.5 − 0.08578643 0.1715728
0.102840503 0.5 + 0.00528808 0.5 − 0.00528808 0.0105761
0.021596881 0.5 + 0.00023321 0.5 − 0.00023321 0.0004664
0.004491555 0.5 + 0.00001008 0.5 − 0.00001008 0.0000201
0.001867443 0.5 + 0.00000174 0.5 − 0.00000174 0.0000034
0.000194102 0.5 + 0.00000001 0.5 − 0.00000001 3 × 10−8

0.000040350 0.5 + (8 × 10−10) 0.5 − (8 × 10−10) 2 × 10−9

0.000008388 0.5 + (3 × 10−11) 0.5 − (3 × 10−11) 7 × 10−11

0.000001744 0.5 + (1 × 10−12) 0.5 − (1 × 10−12) 3 × 10−12

0.000000362 0.5 + (6 × 10−14) 0.5 − (6 × 10−14) 1 × 10−13

0.000000151 0.5 + (1 × 10−14) 0.5 − (1 × 10−14) 2 × 10−14

0.000000016 0.5 + (1 × 10−16) 0.5 − (1 × 10−16) 2 × 10−16

0.000000003 0.5 + (5 × 10−18) 0.5 − (5 × 10−18) 1 × 10−17

6.76 × 10−10 0.5 + (2 × 10−19) 0.5 − (2 × 10−19) 4 × 10−19

1.40 × 10−10 0.5 + (9 × 10−21) 0.5 − (9 × 10−21) 1 × 10−20

2.92 × 10−11 0.5 + (4 × 10−22) 0.5 − (4 × 10−22) 8 × 10−22

6.08 × 10−12 0.5 + (1 × 10−23) 0.5 − (1 × 10−23) 3 × 10−23

1.26 × 10−12 0.5 + (7 × 10−25) 0.5 − (7 × 10−25) 1 × 10−24

2.62 × 10−13 0.5 + (3 × 10−26) 0.5 − (3 × 10−26) 6 × 10−26

5.46 × 10−14 0.5 + (1 × 10−27) 0.5 − (1 × 10−27) 2 × 10−27

1.13 × 10−14 0.5 + (6 × 10−29) 0.5 − (6 × 10−29) 1 × 10−28

2.36 × 10−15 0.5 + (2 × 10−30) 0.5 − (2 × 10−30) 5 × 10−30

4.90 × 10−16 0.5 + (1 × 10−31) 0.5 − (1 × 10−31) 2 × 10−31

1.02 × 10−16 0.5 + (5 × 10−33) 0.5 − (5 × 10−33) 1 × 10−32

2.12 × 10−17 0.5 + (2 × 10−34) 0.5 − (2 × 10−34) 4 × 10−34

4.40 × 10−18 0.5 + (9 × 10−36) 0.5 − (9 × 10−36) 1 × 10−35

9.16 × 10−19 0.5 + (4 × 10−37) 0.5 − (4 × 10−37) 8 × 10−37

1.90 × 10−19 0.5 + (1 × 10−38) 0.5 − (1 × 10−38) 3 × 10−38

3.96 × 10−20 0.5 + (7 × 10−40) 0.5 − (7 × 10−40) 1 × 10−39

8.23 × 10−21 0.5 + (3 × 10−41) 0.5 − (3 × 10−41) 6 × 10−41

1.71 × 10−21 0.5 + (1 × 10−42) 0.5 − (1 × 10−42) 2 × 10−42

3.55 × 10−22 0.5 + (6 × 10−44) 0.5 − (6 × 10−44) 1 × 10−43

7.39 × 10−23 0.5 + (2 × 10−45) 0.5 − (2 × 10−45) 5 × 10−45

1.53 × 10−23 0.5 + (1 × 10−46) 0.5 − (1 × 10−46) 2 × 10−46

3.19 × 10−24 0.5 + (5 × 10−48) 0.5 − (5 × 10−48) 1 × 10−47

6.64 × 10−25 0.5 + (2 × 10−49) 0.5 − (2 × 10−49) 4 × 10−49

3.88 × 10−35 0.5 + (7 × 10−70) 0.5 − (7 × 10−70) 1 × 10−69

0 0.5 0.5 0

velocity = v = tan
1
2
θ = tanh

1
2
α =

(
1

x + y

)
1

time

kinetic absoluteaccel = aabsolute =
dv
dθ
=

(
1
2
+

v2

2

)
1

time2

potential relativeaccel = arelative =
dv
dα
=

(
1
2
− v2

2

)
1

time2

frameaccel = aframe =
dv
dt
= −v2 1

time2 .
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6. Absolute velocity and acceleration

theorem 3 By Galilean Invariance there is no experiment that can be performed that can measure the velocity
of a moving observer. We can detect the presence of accelerations and measure the relative velocity between
two bodies but we cannot measure the absolute velocity (Gleeson, 2010). However we can measure the velocity
v = tan 1

2θ = tanh 1
2α = 1/(x + y) = 1/t of a moving observer. We can detect the presence of accelerations like

d
dθ tan 1

2θ,
d

dα tanh 1
2α and d

dt t
−1 and measure the relative velocity v′ = 1− 1/(x+ y) between two bodies and we can

measure the absolute velocity u = tan θ = (tanhα)(coshα) = 1/x = (2v)/(1 − v2) with u′ = 1/y = sin θ = tanhα.

Proof. Velocity can only be measured in relation to some specified point of rest, therefore, it is said, in physics
absolute velocity does not exist. Just as it happens that absolute velocity u = 1/x = 0 when x = ∞, in mathematics
absolute velocity does not exist only when v = 0. With Galileo’s ṽ = v′ + v = 1 relative velocity v′ = ṽ −
v = 1 − 1/(x + y) exists. Eq. (4) absolute velocity u = tan θ = (2v)/(1 − v2) is measured with the velocity
v = tan 1

2θ = tanh 1
2α = 1/t distance/time of a moving observer. By Galilean Invariance we cannot measure a

velocity, so v = 0 is at rest state and absolute velocity 1/x = 1/∞ = 0 doesn’t exist. Using mathematics, though,
when 0 < v velocity is measurable and absolute velocity does exist. In Einstein’s Special Relativity the velocity
of light v = 1 is invariant; as we said about Eq. (5), absolute velocity is absolute motion u = 1/x = 1/0 = ∞ = c
and u′ = 1/y = sin θ = c. We have also stated that absolute acceleration is

[
dv
dθ =

d
dθ tan 1

2θ =
1
2 sec2 1

2θ =
1
2 +

v2

2

]
=[

dv
dα =

d
dα tanh 1

2α =
1
2 sech2 1

2α =
1
2 −

v2

2

]
−

[
dv
dt =

d
dt t
−1 = −v2

]
. �

To quote Einstein’s (1911) principle (Misner, Thorne, & Wheeler, 1970) of the local equivalence between a “grav-
itational field” and an acceleration:

“We arrive at a very satisfactory interpretation of this law of experience, if we assume that the systems
K and K’ are physically exactly equivalent, that is, if we assume that we may just as well regard
the system K as being in a space free from gravitational fields, if we then regard K as uniformly
accelerated. This assumption of exact physical equivalence makes it impossible for us to speak of the
absolute acceleration of the system of reference, just as the usual theory of relativity forbids us to talk
of the absolute velocity of a system; and it makes the equal falling of all bodies in a gravitational field
seem a matter of course.”

The accepted theory of gravity is Einstein’s theory of General Relativity. The Einstein field equation is G =

8πT, where T is the Riemann stress-energy tensor (Misner, Thorne, & Wheeler, 1970). We will conclude that
Relativity is based on local Lorentz geometry. This essay, however, can express absolute velocity and absolute
acceleration because of our unique hyperbolic geometry Eq. (2). We conjecture an accelerated coordinate frame of
a precondition velocity v = tan 1

2θ = tanh 1
2α = 1/t for a field of accelerations. The vectors z2 = x + iy of complex

variables are basic science because our event points in space P(t) = P( 1
v ) = 1/(eα/2) = 1/[(1 + v)/(1 − v)]1/2 =

P(x + y) stem from hyperbolic properties 1
v = t = x + y.

7. An experiment

When 1 distance/time is 299792458 meters/second = c, the speed of light, we advocate stating a fictitious force
acceleration aframe = dv/dt = d

dt t
−1 = −1/(1/v)2 = −v2 = −[1/(x+y)]2 distance/time2 when, say, the Earth’s gravi-

tational acceleration is g = (−v2)(299792458) = −299792458/30559883.58 = −9.81 m/s2 at x = 2764.04963722.
(Use (x + y)2 = 30559883.58 and y2 = x2 + 1.) Let (x, y) = (x,

√
x2 + 1) = (2764.04963722, 2764.04981811)

be the frame of reference of the Earth. The Earth’s particle wave is moving at a precondition velocity v =
1/(x + y) = 1/t = 1/(2764.04963722 + 2764.04981811) = 1/5528.099455 distance/time = 54230.65566 me-
ters/second. Earth’s orbital velocity is 29.8 km/s. A particle on Earth moves forward at a relative velocity v′ =
1 − v = 1 − 1/5528.099455 = 0.999819106 distance/time = 299738227.3 meters/second. We say the slice of time
is t = 1/v = x + y = 2764.04963722 + 2764.04981811 = 5528.099455 seconds. As the Earth passes a fixed
observer, the observer sees the particle’s absolute velocity at u = 1/x = (2v)/(1 − v2) = (2 1

t )/(1 − ( 1
t )2) =

1/2764.04963722 distance/time = 108461.3149 meters/second. The relative absolute velocity is u′ = 1/y =
1/2764.04981811 distance/time = 108461.3078 meters/second. The Earth’s particle real force absolute acceler-
ation is aabsolute =

1
2 +

v2

2 distance/time2 = ( 1
2 +

v2

2 )(299792458) = 149896233.9 m/s2. The relative acceleration
is arelative =

1
2 −

v2

2 distance/time2 = ( 1
2 −

v2

2 )(299792458) = 149896224.1 m/s2.
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8. Conclusion

This work contends that there is an underlying theory of v within velocity β = tan θ = tanhα = v/c for an absolute
velocity u = tan θ = sinhα.A slice of time can have an analytic quantity t = esinh−1 x = x+(x2+1)1/2 = x+y seconds,
with ∆t = y − x. We are claiming a precondition velocity v = tan 1

2θ = tanh 1
2α = 1/(x + y) = 1/t distance/time,

where 0 ≤ v ≤ 1. We advocate stating vt = [1/(x + y)][x + y] = 1 distance and a particle’s acceleration as
aabsolute = dv/dθ = 1/2 + v2/2 distance/time2. All of the coordinates in Figure 1(b) move together. The angle of
parallelism θ graphs both the circle and the y2 − x2 = 1 vertical hyperbola in hyperbolic terms. The complex plane
point (x, y) makes sec θ = y

x , rather than tan θ = y
x , while vector angle tanφ = y

x holds. Our circle vector z1 = reiθ =

r(cos θ+ i sin θ) = r
(

x
y + i 1

y

)
and hyperbola vector z2 = |z2|eiφ = (y2 + x2)1/2(cosφ+ i sinφ) = x+ iy = cot θ+ i csc θ

are made with the hyperbola’s x and y, rather than the circle’s. Any point on the complex plane can be reached
with reiθ and translated into the frame of reference (x, y).

In the local Lorentz frame of reference every particle moves in a straight line with uniform velocity β. In hyperbolic
geometry the “straight line” is due to the angle of parallelism geodesic θ or Π(x). The Lorentz frame of reference
(“inertial frame of reference”) is rectified as β = v/c = tan θ = tanhα by absolute velocity u = 1

x = tan θ =
(tanhα)(coshα) = sinhα = β/(1−β2)1/2 = (2v)/(1−v2), relative velocity v′ = 1−v = 1−1/(x+y), relative absolute
velocity u′ = 1

y =
1

x+v = sin θ = tanhα, and vector velocity dt
dτ = 1/(1−β2)1/2 = 1

τ
=

y
x = sec θ = coshα = γ. Event

points in space (Misner, Thorne, & Wheeler, 1970) happen P(t) = P( 1
v ) = 1/(eα/2) = 1/[(1+v)/(1−v)]1/2 = P(x+y).

We have τ is proper time and s is proper distance with time dilation ∆t and length contraction s′ as:

τ = ∆t
1
γ
= (y − x)

x
y

∆t = τγ =
s
v
= y − x

s = v∆t =
1

x + y
(y − x) s′ = s

1
γ
= vτ = (

y − x
x + y

)(
x
y

).

Hyperbolic geometry has (cos θ)2 + (sin θ)2 = (x/y)2 + (1/y)2 = 1 with x = cot θ and y = csc θ. Local Lorentz
geometry holds the interval −τ2 = s2 = (AB)2 = −(cos θ)2 = (AC)2 + (BC)2 = (CZ)2 + (BC)2 = −12 + (sin θ)2 =

−(AQ)(AP̀) = (sin θ + 1)(sin θ − 1) = −ττ between vector events B − A (or AB). A light ray calculated from
events P̀B to events BQ lies with B off and with ACZ = AP̀QZ on the particle’s world line P(τ). Vectors z2 =

x + iy are alternately made with t = 1
v = x + y than spacetime events P(τ) = P(∆t

γ
). We may have Lorentzian

B − A = P(τ) − P(0) = P(cos θ) − P(0) = P(1) − P(0) at one second but hyperbolic P(t) = P(x + y) = P(0 + 1)
events happen on the complex plane. The combination of hyperbolic geometry and local Lorentz geometry might
be called pregeometry, gravitational collapse (Misner, Thorne, & Wheeler, 1970). We assert that absolute velocity
and absolute acceleration exist in mathematics and are measurable. A particle’s real force acceleration is aabsolute =

(1/2 + v2/2)(299792458) m/s2 with a gravitational fictitious force acceleration g = (−v2)(299792458) m/s2.
Can this expanding real force be dark energy?

Joshua Frieman, director of the Dark Energy Survey, Frieman (2015) describes the particle, with my brackets, as
follows:

“Dark energy takes the form of a so far undetected [‘quintessence’] particle that could be a distant
cousin of the recently discovered Higgs boson . . . a particle acting like a ball rolling down a hill at
each point in space. The rolling ball carries both kinetic energy (because of its motion) [like our
absolute acceleration] and potential energy (because of the height of the hill it is rolling down) [like
our relative acceleration]; the higher an object is, the greater its potential energy is. As it rolls down,
its potential energy declines, and its kinetic energy rises . . . . If the quintessence particle is extremely
light, . . . then it would be rolling very slowly today, with relatively little kinetic versus potential energy.
In that case, its effect on cosmic expansion would be similar but not identical to that of vacuum energy
and would lead to acceleration [of the universe].”

If dark energy (Riess & Livio, 2016) is the energy of the vacuum (General Relativity’s cosmological constant)
(Misner, Thorne, & Wheeler, 1970), then the acceleration of the moving reference frame aframe = −v2 = −1 will
be constant at v = 1. Eq. (2) is a projective geometry, which does not include Riemannian geometry, nor topology
(Coxeter, 1989). General Relativity is a theory determined by relative acceleration arelative =

dv
dα = 1/2 − v2/2. The

Einstein field equation is G = 8πT, where T is the Riemann stress-energy tensor. With Riess and Livio (2016) we
alternatively hypothesize dark energy may be an energy field that pervades the universe, imbuing every point in
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space P(t) = P( 1
v ) = 1/(eα/2) = 1/[(1 + v)/(1 − v)]1/2 = P(x + y) with a property aabsolute =

dv
dθ = 1/2 + v2/2 that

counteracts the pull of gravity g = −v2.
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