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Abstract 
This article provides a thorough and comprehensive analysis of an elementary problem in rigid body dynamics, 
involving a projectile and a rod on a smooth table. The problem presented is an extension of a problem taken 
from an undergraduate physics textbook. This paper presents some generalisations to the problem, namely the 
unevenness (non-uniformity) of the rod’s mass distribution, the elasticity of the collision, and the case where the 
rod is pivoted. This paper presents nice analytical steps that address some misconceptions in students’ way of 
thinking as well as the failure of intuition when it comes to solving physics problems which necessarily require 
mathematical approach. The result is quite surprising and counterintuitive as it goes against our intuition with 
daily experience involving doors and levers. 
Keywords: failure, intuition, rigid body, dynamics, collision 
1. Introduction 
Dynamics is a branch of classical mechanics concerned with the study of forces and torques and their effect on 
motion, as opposed to kinematics, which studies the motion of objects without reference to its causes. Isaac 
Newton defined the fundamental physical laws which govern dynamics in physics, especially his second law of 
motion. Just as the study of Newtonian dynamics begins by defining a force and its relation to the system’s 
momentum, the study of rotational dynamics starts by defining our analogue to a force – a torque – and its relation 
to the system’s angular momentum.  
The analysis of physics problems has often been downgraded into intuitive approach, which although it may 
work for elementary physics concepts, but is often defied by the actual outcome in a more complex situation. For 
example, in a linear collision, a recent paper demonstrates that even both physics students and teachers with 
strong conceptual understanding could wrongly suggest that putting more masses in between two bodies could 
not possibly increase the maximum portion of the kinetic energy transferred (Ricardo & Lee, 2015).  
 

 
Figure 1. A projectile collides perpendicularly with a rigid rod at rest on a smooth horizontal table. 
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An elementary problem in rigid body dynamics was discussed in an article written by Lemos (2008) with at least 
one aspect that does not conform to what intuition suggests. It involves a collision shown in Figure 1, where a 
projectile collides perpendicularly with a rod on a smooth horizontal table. In this collision, it is natural to 
intuitively expect that larger  implies larger , with = ±ℓ giving the largest angular speed. This happens as 
our intuition tells us that the largest angular speed is achieved when the force is applied as far as possible from the 
rotational axis, or the fulcrum, in this case, the centre of mass of the rod. And this fact is supported by our everyday 
experience with doors and levers. This particular problem was taken from an undergraduate physics textbook 
(Resnick et al., 2001, pp.356-357) and the analysis presented in this paper is suitable for undergraduate level. 
The analysis for elastic collision has been done in the previous article (Lemos, 2008). This paper presents a more 
thorough and comprehensive analysis of the case by exploring the unevenness (non-uniformity) of the rod’s 
mass distribution, the elasticity of the collision, and the case where the rod is pivoted. The results are quite 
surprising and counterintuitive, and are able to provide a deeper understanding for undergraduate physics 
students in learning rotational dynamics. 
2. Theory 
First, basic concepts needed for the calculations are revisited. It is necessary to understand the appropriate 
conditions required to use the equations. 
2.1 Conservation of Linear Momentum 
In a closed system (one that does not exchange any matter with its surroundings and is not acted on by external 
forces ) the total linear momentum is constant. This fact, known as the law of conservation of linear 
momentum, is implied by Newton’s laws of motion (Feynman et al., 2013). 

  = 0 ⇒ =  (1) 

where   denotes the total external linear impulse, which is necessary to be zero (or negligible) for 
conservation of linear momentum to be preserved;  denotes the initial linear momentum of the system, and 

 denotes the final linear momentum of the system. For a rigid body, like the rod presented in Figure 1, its 
linear momentum can be obtained by multiplying its mass with the velocity of its centre of mass. 
2.2 Conservation of Angular Momentum 
Similar to linear motion, the law of conservation of angular momentum states that when no (or negligible) 
external angular impulse by external torque  acts on an object or a closed system of objects, the system’s 
angular momentum remains constant (Podolsky, 1966). Commonly the point of collision is taken to be the 
reference point so as to make the angular impulse acting on each body to be zero. But when a pivot is introduced, 
the pivot needs to be taken as the reference point so as to make the angular impulse acting on the whole system 
to be zero. 

  = 0 ⇒ =  (2) 

where   denotes the total external angular impulse, which is necessary to be zero (or negligible) for 
conservation of angular momentum to be preserved;  denotes the initial angular momentum of the system, 
and  denotes the final angular momentum of the system. 
2.3 Conservation of Energy 
The law of conservation of energy states that when no (or negligible) work is done by the non-conservative 
forces , the total energy in the system is conserved. 

 ∙ = 0 ⇒ =  (3) 

where ∙  denotes the total work done by the non-conservative forces, which is necessary to be zero (or 
negligible) for conservation of energy to be preserved;  denotes the initial energy of the system, and  
denotes the final energy of the system. Note that some non-conservative forces may exist in a system, but as long 
as they do not perform any work on the system, conservation of energy still holds. 
2.4 Moment of Inertia 
The moment of inertia can be defined as the “laziness of an object to change its angular velocity”. It is a property 
of a rigid body, which can be obtained by integration or by making use of the symmetrical property of the shape 
using Ricardo’s scaling method (Ricardo, 2015). The moment of inertia of a uniform rod of mass  and length 2ℓ about its centre of mass is given by = 2ℓ = ℓ . And if a rotational axis is located at distance  
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away from the centre of mass of the rod, its moment of inertia about the axis can be obtained by using the 
parallel axis theorem, 

 = + = ℓ +   (4) 

2.5 Coefficient of Restitution 
Suppose a projectile of mass  and linear velocity  collides elastically and perpendicularly with a rigid rod 
of mass  and length 2ℓ having initial linear velocity  in the same direction as , on a smooth horizontal 
table. The mass of the rod is assumed to be uniformly distributed. 
Let  and  indicate the final linear velocities of the rod’s centre of mass and the projectile, respectively, and 
let  indicate the final angular velocity of the rod (Figure 2). For all linear velocities involved, positive sign 
signifies rightward motion and negative sign leftward motion. For the angular velocity, positive sign signifies 
anticlockwise rotation and negative sign signifies clockwise rotation. 
 

 
Figure 2. Generalisation of the problem: the initial linear velocity of the rod’s centre of mass is  

 
Assuming elastic collision, applying conservation laws in (1), (2), and (3), and by using the moment of inertia 
expressed in (4) yields 

 + = +  (5) 

 = − ℓ  (6) 

 + = + + ℓ  (7) 

From equations (5) and (7), − + = − + + 3 − ℓ  

+ = + + 3 − ℓ  

 − = − + 3 − ℓ  (8) 

Coefficient of restitution characterises the type of one-dimensional collision (Thornton, 1997). It is commonly  
defined as = . This definition does not account for the rotation of the rod, and hence its value is not 
normalised – it is not equal to one when the collision is elastic, neither is it equal to zero when the collision is 
inelastic (i.e. the projectile sticks to the rod after the collision instantaneously.). To normalise it, the coefficient 
of restitution in this specific case can be defined as 

 = ℓ  (9) 
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This is valid to characterise the elasticity of the collision since the value of coefficient of restitution is invariant 
across the frames of reference. For instance, in a frame moving to the left with speed , all the linear velocities 
in equation (9) will need to be added by , and hence the value of  remains unchanged. 
From equation (8), it is obvious that using the definition in (9) for an elastic collision, = 1. For an inelastic 
collision, the projectile sticks to the rod, i.e. = + = + 3 − ℓ , and hence = 0. Therefore, for any 
dissipative collision, ∈ 0,1 . 
3. Analysis 
The following three sections present generalisations to the case in Figure 1. 
3.1 First Generalisation: Unevenness (Non-uniformity) of the Rod 
Consider the case where = 0 and the collision is elastic. To generalise the problem, let the centre of mass of 
the rod be located at distance  away (taken to be a non-negative value) from the centre of the rod, ∈ 0, ℓ , 
and its moment of inertia about its centre of mass be  (Figure 3). The point of collision is at ∈ −ℓ, ℓ . 
 

 
Figure 3. First generalisation: unevenness (non-uniformity) of the rod 

 
As a result of collision, the projectile and the centre of mass of the rod will move horizontally – since there is 
only horizontal force acting on them during the short time of collision – and at the same time, the rod will rotate 
about its centre of mass. 
Using the sign convention described in section 2.5, applying equations (1), (2), and (3),  = +  − =  12 = 12 + 12 + 12  

yields 

 =  (10) 

 =  (11) 

 =  (12) 

It is somewhat clear from equation (11) that there is no way for the rod to move leftward as the expression 
always yields positive number. However, equation (10) indicates that the projective will move leftward if 

< , and it will stop moving after the collision if the equality holds. Moreover from equation (12), the rod  

will rotate clockwise if < , and it will stop rotating after the collision if the equality holds. This fact is rather 
obvious: the rod will rotate clockwise if the projectile hits the rod a point located higher than the centre of mass. 
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The question to be addressed in this paper is “Where should the projectile hit for the rod to acquire maximum 
angular speed?” To answer this, the first and second derivatives of  with respect to  should be explored. = 2+ + − + − −  

= − 2 −+ + − 3 + − −  

The first derivative goes to zero if 

 = ±  (13) 

It is also obvious that < 0 and > 0 for = + ; > 0 and < 0 for = − ,  
which essentially correspond to the local maxima of the angular speed. The corresponding expressions for  
are 

 = ±  (14) 

Note that since ∈ −ℓ, ℓ  and  is a non-negative value, for = +  to exist it is necessary to have 
∈ 0, ℓ − , and for = −  to exist it is necessary to have ∈ − ℓ, ℓ . If ∈ 0, ℓ  then both local  

maxima exist for ∈ 0, ℓ − . If ∈ ℓ, 2ℓ  then only one local maximum exist for ∈ − ℓ, ℓ  whose  

value never falls below the global maximum.  
For instance, consider a particular case where the rod is uniform, = 0, = ℓ  (from equation (4)), 
equations (13) and (14) yield 

 = ±ℓ  (15) 

 = ± ℓ  (16) 

with a condition that ℓ ≤ ℓ or ≤ 2 . This is counterintuitive to many students, even those with good  
conceptual understanding, as the maximum angular speed is attained not when the projectile hits the rod’s end.  
In fact, if = ±ℓ, equation (12) gives = ± ℓ , which is at most equal to the one obtained in equation (16).  
To prove that,  3+ − 64 + = 3 2 −4 + + ≥ 0 

The equality is achieved when = 2 , = ±ℓ, i.e. the greatest angular speed is attained when the projectile 
hits the rod at one end. When > 2 , no local maximum can be found and the rod should be hit at one end, = ±ℓ, to attain the greatest angular speed, = ± ℓ . 

Students also very often argue based on intuition that the maximum angular speed of the rod is attained when the 
projectile stops moving immediately after the collision, so as to give off its whole kinetic energy to the rod. This 
misconception is similar to the common one in the case of one-dimensional collision between two blocks  
(Ricardo & Lee, 2015). Substituting equation (13) to equations (10) and (11), = = , indicates that the  
maximum angular speed of the rod is attained when the projectile and the centre of mass of the rod move with 
identical linear velocities after the collision. This is similar to a case of inelastic collision in the absence of 
rotation. However, the supposedly dissipated energy has now appeared in the form of the rotational kinetic 
energy. Note that this is true even for the case where the rod is not uniform. 
On the other hand, if the rod is hit at its centre of mass, = , there will be no rotation involved, and the  
collision is similar to one-dimensional collision between two blocks, = , = , and = 0. 
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3.2 Second Generalisation: Elasticity of The Collision 
Consider the case where = 0 and the mass of the rod is uniformly distributed, i.e. = 0, = ℓ   
(Figure 4). The point of collision is at ∈ −ℓ, ℓ . It shall be assumed that the coefficient of restitution is , 
where ∈ 0,1 , inclusive of the two extreme cases: elastic and inelastic collisions. 
 

 
Figure 4. Second generalisation: elasticity of the collision 

 
As a result of collision, the projectile and the centre of mass of the rod will move horizontally – since there is 
only horizontal force acting on them during the short time of collision – and at the same time, the rod will rotate 
about its centre of mass. 
Using the sign convention described in section 2.5, applying equations (5), (6), and (9), with = 0, = +  0 = − 13 ℓ  

= − + 3 ℓ  

yields 

 = ℓℓ  (17) 

 = ℓ  (18) 

 = ℓ ℓ  (19) 

It is somewhat clear from equation (18) that there is no way for the rod to move leftward as the expression 
always yields positive number. However, equation (17) indicates that the projectile will move leftward if  1 + ℓ < , and it will stop moving after the collision if the equality holds. Moreover, from equation (19),  
the rod will rotate clockwise if < 0, and it will stop rotating if the equality holds, which agrees to common 
sense. 
To find the local maxima of the angular speed, the first and second derivatives of  with respect to  should 
be explored. 

= 3 1 +ℓ + − ℓ1 + ℓ +  
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= − 54 1 +ℓ + − ℓ1 + ℓ +  

The first derivative goes to zero if  

 = ±ℓ  (20) 

and  is clearly negative when  takes positive root and positive when  takes negative root, which essentially 
correspond to the local maxima of the angular speed. The result is surprising, and again, counterintuitive as regardless 
of the elasticity of the collision, the projectile has to hit the rod at a point = ±ℓ  from the centre of the rod 
to maximise its angular speed. In general, these points are not the rod’s ends except if = 2 . Since this result 
is not even affected by the coefficient of restitution, it still holds for the extreme two cases: = 1 (elastic 
collision) and = 0 (inelastic collision). 
The corresponding expressions for  are given by 

 = ± ℓ  (21) 

which is identical to equation (16) for elastic case. In fact, if = ±ℓ, equation (19) gives = ± ℓ ,  

which is at most equal to the expression in equation (21). This fact has been proven in section 3.1, − ≥ 0. 

The necessary condition that needs to be fulfilled is | | ≤ ℓ or ≤ 2 . When = 2 , the local maxima  
occur at both ends of the rod and = ± ℓ . If > 2 , no local maximum could be found and the rod  
should be hit at one of its ends, regardless of the elasticity of the collision. 
As mentioned earlier, students may also argue based on intuition that the maximum angular speed of the rod is 
attained when the projectile stops moving immediately after the collision, so as to give off all its whole kinetic 
energy to the rod. This is clearly a misconception, similar to the case in section 3.1. Substituting equation (20) to  

equations (17) and (18), =  and = . It is interesting to see that for an elastic collision, = =
, i.e. the projectile and the centre of mass of the rod move with identical linear velocities after the collision, 

similar to a case of inelastic collision in the absence of rotation. For an inelastic collision,  is half of the elastic 
case, and = + = + , signifying that the projectile sticks to the rod instantaneously. 
3.3 Third Generalisation: The Rod is Pivoted. 
Consider the case where = 0, the collision is elastic, and the mass of the rod is uniformly distributed, i.e. = 0, = ℓ . To generalise the problem, let the rod be pivoted at a distance  away (taken to be a non-negative value) 
from its centre (Figure 5). The point of collision is at ∈ −ℓ, ℓ . 
 

 
Figure 5. Third generalisation: the rod is pivoted 
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As a result of collision, the projectile will move horizontally – since there is only horizontal force acting on them 
during the short time of collision – and the rod will rotate about the pivot. 
In this case, equation (1) is no longer valid as an external force from the pivot is being introduced. Equation (2) 
can only be applied by taking the pivot as the reference point, for otherwise there will be a non-negligible 
angular impulse on the system acted by the pivot. Equation (3) still holds as the external force from the pivot 
performs no (or negligible) work. Using the sign convention in section 2.5., applying equations (2) and (3) 

− = − + 13 ℓ +  

12 = 12 + 12 13 ℓ +  

yields 

 = ℓℓ  (22) 

 = ℓ  (23) 

It is somewhat clear from equation (23) that the rod will not rotate if = . If >  then the rod will rotate 
anticlockwise, and if <  then the rod will rotate clockwise. 
To maximise the angular speed of the rod, the first and second derivatives of  with respect to  need to be 
explored. 

= 2 ℓ + − −− + ℓ +  

= 4 − − − ℓ + 3− + ℓ +  

The first derivative goes to zero if  

 = ± ℓ + 3  (24) 

It is also obvious that < 0 and > 0 for = + ℓ + 3 , > 0 and < 0 for = − ℓ + 3 , 
which essentially correspond to the local maxima of the angular speed. Substituting equation (24) to equation 
(22), the result also shows that the maximum angular speed will be attained if the projectile stops moving after 
the collision, which is intuitive since all its kinetic energy is converted into the rod’s rotational kinetic energy in 
this case. Similar to the previous cases, interestingly these points are not the rod’s ends.  
The corresponding expressions for  are given by 

 = ± ℓ  (25) 

Note that since −ℓ ≤ ≤ ℓ, for two local maxima to be found, it is necessary to have −ℓ ≤ − ℓ + 3   
and + ℓ + 3 ≤ ℓ. If only one of them is fulfilled then only one local maximum exists, and if none of 
them is fulfilled then no local maximum can be found.  
The first inequality is equivalent to = 3 − − 6 ℓ + − 3 ℓ ≤ 0. Its discriminant is given by 12 ℓ 4 − , and the function passes through the origin if = . Hence, noting that 0 ≤ ≤ ℓ, the  
analysis can be split up into four cases: ∈ 0, , ∈ , , ∈ , , = , and ∈ , ∞ . In the first  
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three cases, the quadratic function is convex; the fourth case yields to a linear function; and in the fifth case the 
quadratic function is concave. In the first case, it is impossible to find any real . The second case corresponds  
to ∈ ℓ, ℓ . The third case corresponds to ∈ 0, ℓ . The fourth case also corresponds to  ∈ 0, ℓ . In the fifth case, the quadratic function will never have any zeros, hence it also corresponds to ∈0, ℓ . 
The second inequality is equivalent to = 3 − + 6 ℓ + − 3 ℓ ≤ 0. Its discriminant is given by 12 ℓ 4 − , and the function passes through the origin if = . Hence, noting that 0 ≤ ≤ ℓ,  
the analysis can be split up into four cases: ∈ 0, , ∈ , , ∈ , , = , and ∈ , ∞ . In the first 
three cases, the quadratic function is convex; the fourth case yields to a linear function; and in the fifth case the 
quadratic function is concave. In the first case, it is impossible to find any real . In the second case, it is  

impossible to find any non-negative . The third case corresponds to ∈ 0, ℓ . The fourth case 

corresponds to ∈ 0, ℓ . In the fifth case, the quadratic function is concave, hence it corresponds to ∈
0, ℓ . 

Therefore, one local maximum can be found if either one of the following conditions is satisfied: ∈ ,  and ∈ ℓ, ℓ , or ∈ ,  and ∈ ℓ, ℓ , or =  and ∈ ℓ , ℓ , or ∈ ,∞  and ∈ ℓ, ℓ ; and two local maxima can be found if either one of the following conditions is satisfied: ∈,  and ∈ 0, ℓ , or =  and ∈ 0, ℓ , or ∈ , ∞  and ∈ 0, ℓ . 

In the previous two generalisations, one may have thought that the reason why local maximum happens not at 
one of the rod’s ends is due to the linear velocity the rod gains after the collision. But the result obtained in (24) 
tells us that even when the centre of mass of the rod is fixed = 0 , the local maximum is attained not when 
the projectile hits one of the rod’s ends, except when = .  

What if ∈ 0, , or ∈ ,  and ∈ 0, ℓ ? Then it would be impossible to find a local maximum  

for the angular speed, and global maxima should be taken, = ±ℓ. The corresponding expressions for  are  

= ±ℓ±ℓ ℓ . Intuitively, letting the projectile hit the rod at its end that is farther from the pivot,  = −ℓ, should contribute to greater angular speed. To verify this, ℓ −ℓ − + ℓ + − ℓ +ℓ + + ℓ +
= − 2 + + − ℓℓ − + ℓ + ℓ + + ℓ +  

which is obviously negative unless = 0. If = 0, the rod is symmetrical, and hence it does not matter which 
end of the rod the projectile hits. 

From equation (22), it is obvious that the projectile will stop moving after the collision if − = ℓ + , 

or equivalently = ± ℓ + 3 . Comparing with equation (24), it tells us that local maxima occur when the  

projectile stops moving after the collision. 
4. Conclusion 
This paper generalises the case of a projectile hitting a stationary rod on a smooth table, by exploring the 
unevenness (non-uniformity) of the rigid body, the elasticity of the collision, as well as the case where the rod is 
pivoted. For the rod to attain the greatest angular speed after the collision, the projectile should hit the rod at a 
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certain point, which is in general not the rod’s end. This is true even if the rod is uniform, its centre of mass is 
pivoted, and the collision is elastic, as presented in the last section. All the results obtained have proven that 
intuition fails when it comes to specific physics problems that necessarily require mathematical approach. 
In the first generalisation, the rod (mass , length 2ℓ, centre of mass at  from its centre, moment of inertia 
about its centre of mass ) is assumed to be non-uniformly distributed, and the centre of mass of the rod is not 
at the centre of its dimension. Only elastic collision is being considered. To maximise the angular speed of the 
rod, the projectile (mass ) should hit the rod perpendicularly at positions  from the centre of the rod, where 

= ± + , if ∈ 0, ℓ − + , + ∈ 0, ℓ
− + , if ∈ + − ℓ, ℓ , + ∈ ℓ, 2ℓ   

The corresponding angular velocities are respectively given by 

= ± + , if ∈ 0, ℓ − + , + ∈ 0, ℓ
− + , if ∈ + − ℓ, ℓ , + ∈ ℓ, 2ℓ  

Figure 6 illustrates the behaviour of ℓ  as a function of ℓ in this scenario, for = 0.8, = 0.1ℓ; and  
for = 1.3, = 0.7ℓ.  
 

(a) (b) 
Figure 6. Graph of ℓ  vs ℓ for: (a) = 0.8ℓ, = 0.1ℓ ; (b) = 1.3ℓ, = 0.7ℓ 

 
In the second generalisation, the rod is assumed to be uniformly distributed (mass , length 2ℓ, moment of  
inertia about its centre of mass ℓ ). The collision is assumed to be dissipative where = ℓ  ∈  0,1 . To  
maximise the angular speed, the projectile (mass ) should hit the rod perpendicularly at positions  from the 
centre of the rod, where 

= ±ℓ +3 , ≤ 2±ℓ, > 2  

The corresponding angular velocities are respectively given by 
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= ± 3+ 1 +2ℓ , ≤ 2
± 34 + 1 +ℓ , > 2  

Figure 7 illustrates the behaviour of ℓ  as a function of ℓ in this scenario, for = 0.47 and = 5.75. 
 

(a) (b) 
Figure 7. Graph of ℓ  vs ℓ for: (a) = 0.47 ; (b) = 5.75 

 
In the third generalisation, the rod is assumed to be uniformly distributed (mass , length 2ℓ, moment of  
inertia about its centre of mass ℓ ). The collision is assumed to be elastic. A pivot is being introduced in the  
system at distance  from the centre of the rod. To maximise the angular speed of the rod, the projectile (mass 

) should hit it perpendicularly at positions  from the centre of the rod, where = ± ℓ + 3  and = ± ℓ  if any of the followings is satisfied: 
 

∈ 3 ,  and ∈ 0, −3 + 3 4 −3 − ℓ
=  and ∈ 0, ℓ3∈ , ∞  and ∈ 0, 3 − 3 4 −3 − ℓ

 

= − ℓ + 3  and = − ℓ  if any of the followings is satisfied: 

∈ 4 , 3  and ∈ 3 − 3 4 −3 − ℓ, 3 + 3 4 −3 − ℓ
∈ 3 ,  and ∈ −3 + 3 4 −3 − ℓ, ℓ

=  and ∈ ℓ3 , ℓ
∈ , ∞  and ∈ 3 − 3 4 −3 − ℓ, ℓ
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= −ℓ and = − ℓℓ ℓ  if any of the followings is satisfied: 

∈ 0, 4∈ 4 , 3  and ∈ 0, 3 − 3 4 −3 − ℓ  

Figure 8 illustrates the behaviour of ℓ  as a function of ℓ in this scenario, for = , = 0.2ℓ; = 0.5 ,  = 0.5ℓ; and = 0.1 , = 0.5ℓ. 
 

(a) (b) 

(c) 
Figure 8. Graph of ℓ  vs ℓ for: (a) = , = 0.2ℓ ; (b) = 0.5 , = 0.5ℓ ; 

 (c) = 0.1 , = 0.5ℓ 
 
In general, the local maxima occur not at the rod’s end, regardless of the generalisation of the case. This is 
counterintuitive as it goes against our daily experience with doors and levers. The underlying concepts behind 
the problem presented are simple, and students with good conceptual understanding may come out with 
inaccurate analysis as they approach it intuitively. For relatively advanced physics problems, mathematical 
formulas therefore should not be avoided.  
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