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Abstract

The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous
system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons
obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method
was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical
interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their
behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers
term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of
solution which is a combination between shock and soliton waves is obtained . The topology of phase portrait and
potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can
predict different classes of the travelling wave solutions according to different phase orbits. The obtained results
may be helpful in better understanding of waves propagation in various space plasma environments as well as in
inertial confinement fusion laboratory plasmas.

Keywords: electron-acoustic solitary and shock waves; reductive perturbation method; Kadomstev-Petviashvili-
Burgers equation

1. Introduction

Recently, there has been much interest in studying different types of the nonlinear phenomena in plasma physics
because of their importance in the environment of space and in laboratory plasma. As the shock and soliton waves
in plasma offer a rich physical insight underlying the nonlinear phenomena, studying these types of waves are
of particular interest for many researchers (Mamun and Shukla 2009; Samanta et al. 2013; Hussain et al. 2013;
Tribeche and Bacha 2013). The nonlinear electron-acoustic solitary and shock waves have been tested in laboratory
devices when the plasma consisted of two temperature electrons, referred to as hot and cold electrons (Ikezawa
and Nakamura 1981; Watanabe and Taniuti 1977). Electron-acoustic (EA) mode has been observed in the Earth’
magnetosphere by many satellites, e.g. Viking, FAST etc. (Dubouloz et al. 1991; Cattell et al. 1998; Ergun et al.
1999; Pottelette et al. 1999; Miyake et al. 2000). Therefore, the EA waves and their attributes have been the subject
of many researches (see, for example, Dubouloz et al. 1991; Berthomier et al. 2000; Mamun and Shukla 2002;
Kakad et al. 2007; El-Shewy 2011; Sabry and Omran 2013) in plasma physics. Kakad et al. (2009) investigated
the effect of two temperature ions on the nonlinear evolution of small amplitude EA waves for the three-component
plasma consisting of cold electron, low and high temperature ions. They showed that the estimated electric field
of the electrostatic structure is in good agreement with the observed solitary wave structures in the Earth’s plasma
sheet boundary layer. Pakzad and Tribeche (2010) studied the effect of electron nonthermality on the existence
and possible realization of electron-acoustic solitary waves using Sagdeev’s pseudopotential technique. Sahu and
Roychoudhurya (2012) have studied the nonlinear wave structures of EA waves in an unmagnetized quantum
plasma consisting of cold and hot electrons and ions. They investigated the quantum correction of the EA waves
and examined the effects of quantum diffraction and Mach number on the nonlinear properties of EA solitary waves
by using the quantum hydrodynamic model.
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Because the plasma particles in many cases show deviabionMiaxwell- Boltzmann distribution then the phys-
ical velocity distributions can be characterized by a noaxiwellian distribution function specially in a high en-
ergy tail (Chatterjee et al., 2010; Choi et al., 2011). As aggalization of the Maxwell- Boltzmann distribution,
we introduce Kappa (superthermal) distribution functioattdescribes the superthermal particles. The Kappa dis-
tribution as a power-law function was introduced initialty describing particles in plasmas out of the thermal
equilibrium (i.e., electrons with the speed faster thantbeemal speed) such as in the Magnetosphere environ-
ment, Solar wind, the corona and other space plasmas (Mak&iret al., 1997; Zouganelis, 2008). In their work,
Pierrard and Lazara (2010) investigated the theory andagtioins of Kappa distributions, detection, generation,
existence, properties, and its application in space plasma

Normally, the reductive perturbation technique has beed tis reduce the equations of plasma system to a sin-
gle nonlinear partial dierential equation. One of the most important type is the dimoensional Kadomtsev —
Petviashvili (KP) equation. This equation has been useehsitely to study dierent physical phenomena arises
in many field of physics, fluid mechanics, plasma physics asddynamics. Borhanian and Shahmansouri (2012)
investigated the appearance of nonlinear electron—acaditary waves in an unmagnetized and collisionless
plasma comprising cool electrons, kappa distributed hemitedns and stationary ions in nonplanar geometry. They
derived the variable cdicient KP equation that governs the evolution of scalar g@ktescribing propagation of
EA waves. Also, the influence of superthermality and geoyratithe properties of EA solitary waves is discussed.
Very recently, Elwakil et al. (2014a) investigated the &l@a-acoustic soliton energy of the KP equation at critical
ion density in an unmagnetized collisionless plasma ctetisf a cold electron fluid, low temperature ions and
high temperature ions obeying Boltzmann type distribigidhwas founded that, the presence of ions density
and the directional cosirlenot only significantly modify the basic properties of saltatructure, but also change
the polarity of the solitary profiles.

In the plasmas medium, if the dissipation is weak at the atarigtic dynamical time scales of the system, then
the formation of solitary structures which develop as altesfubalance between nonlinearity and dispersion of
the plasma medium are generated. Also it is well known that@sence of some dissipative mechanism appears
due to the fluid viscosity of the plasma medium, the balantedrn nonlinearity and dissipation may lead to the
genesis of shock waves. Shock waves have been studied byousm@apers in many type of plasma (Gupta et
al., 2001; Tribeche & Bacha, 2010). Most of these studieg leaen confined to Maxwell-Boltzmann distributed
electrons and ions, while in space plasmas particlesloligioins are usually non-Maxwellian, and may be modeled
by the so-called kappa or suprathermal distribution (Sura&€elrhorne, 1991; Hellberg et al., 2009; Baluku et al.,
2010). El-Shewy and Abdelwahed (2013) studied tfieat of nonthermality of hot electrons on the propagation
and shape of EA waves in an unmagnetized collisionless @lasrd obtained the soliton and shock waves as a
small-amplitude approximation.

In this article, we consider a homogeneous system of an unetizgd, collisionless and dissipative plasma which
consisted of a cold electron fluid, superthermal hot elestrobeying superthermal distribution and stationary
ions. With such type of plasma, we are motivated to study grebiour of electrostatic nonlinear structures such
as solitons, monotonic as well as oscillatory shocks foimnahrough the two dimensional modified KP- Brugers
equation. Also, we investigate the bifurcation and phaseg@oof the KP-Brugers equation in order to recognize
different classes of nonlinear waves.

The layout of this paper is organized as follows: In Sect.  present the basic set of fluid equations for the
system and KP-Burgers equation has been derived by emplty@reductive perturbation method. In Sec. 3, The
stationary solitary wave solution, monotonic shock wavatian, and oscillatory shock solution of the KP-Burgers
equation and their basic features are studied. In Secte4etults are presented and discussed. Finally, a summary
of our findings and conclusions is given in Sect. 5.

2. Basic Equation and K P-Burgers Equation

We consider a homogeneous system of unmagnetized, colés®plasma consisted of a cold electron fluid and
superthermal hot electrons obeying superthermal digtoibuand stationary ions. Such a two-dimensional system
is governed by the following equations (Danehkar et al., 1201

on 0 0
9t + 6_x(n Ux) + @(n ) = 0, 1)
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the suprathermal electron density is given by :
—K+3
nhz(l— ¢3) : 5)
k=32

where the real numbaris the spectral index that measure the deviation from the standard Maxwell-Boltzmann
distribution (which is recovered in the limit— o).

Equations (1-5) are supplemented by Poisson’s equation,

2 2
(397(];+ %T(pz—n—anh+(l+a)=0. (6)
In the earlier equations, uy () andp denote the cool electron fluid density, velocityxfirection (velocity in
y-direction) and pressure variables normalized with respeatgoc = [ksTn/me]/? andngoksTe, respectively.
Time and space were scaled by the plasma perigd= (n.0€?/come) /2 and the characteristic lengtty =
(e0ksTn/Nc0€%)Y2, respectively. Wherey is the permittivity constante is the elementry charge and. is the
electron mass. Finally is the wave potential scaled kyT,/e. We have defined the temperature ratio of the
cool to the hot electrons as = T./Ty with (T, refers to the temperature of cold electrons dpdefers to the
temperature of hot electronsy refer to the initial equilibrium density of hot electrons and cold electygmefers
to the viscosity coicient andx andy are the space co-ordinates drisl the time variable.

Equations (1) and (2) represent the inertia of cold electron and equation (6) is the poisson equation need to make
the self consistent, the electron density described by superthermal distributions given by equation (5).

Now, to obtain the KP-Burgers equation from equations (1-6) we use the reductive perturbation technique (Washimi
and Taniuti 1966). The slow stretched co-ordinates are defined as:

T=6t, E=e(x-At), £ =€y, (7)

wheree is a small dimensionless expansion parameter Aiglthe phase velocity of EA waves. All physical
quantities appearing in (1-6) are expanded as power seréatiaut their equilibrium values as:

n = l1+em+en+eng+...,

Uy = EZUXl + E4UX2 + E6UX3 + ...,
By = €0 +eDp+edg+ ...,
¢ = €1+ P+ pa+ ... (8)
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P = 1+€°p+e*pr+edps+... 9)

We impose the boundary conditions that@s— oo, n = p = 1,ux = 9y = ¢ = 0. Substituting equations (7) and
(8) into equations (1-6), and equating @i@ents of like powers oé. Then, from the lowest-order equationsin
the following results are obtained :

=t gig = == ©)
RV PA e VN ¥ l’p_30'—/12'

Poisson’s equation gives the compatibility condition

ap1A? —30aB —1=0. (10)
The higher orders ia yields the following set of equations :

an ar‘|2 OUxo aﬂy]_
AL .- -
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or "o "M TOPIGe T TR, :

2

0
ﬂwwiwm—amm+5?m

(11)

By Eliminating the second order perturbed quantities Ucxe, P2 andg, , we finally obtain the desired KP-Burgers
equation:

0 (0 0 H? o° o2
35(6 ¢l+s¢16§¢l+F6_§2¢1+R6_§3¢1)+Q@¢1:0’ (12)
where
S = (3(1+4a/0',81)+ 222)
1
I
F = 2
R - 1
2(0’,31)2
A
Q = E,
(i 12—k
pr = (2 3),/32=—(2 )( 22 ) (13)
(k= 3) 2(x-3)
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3. Stationary solution

To study the traveling wave solutions of the modified KP eiquatl2), we introduce the following traveling wave
variable

X:§+§_U0T’ (14)

wherey is the transformed coordinate relative to a frame which reevith the velocityvg. By integrating equation
(12) with respect to the variabje, the reduced KP-Burgers equation leads to

d?p1  F dgy (Q-wvo) , _
B TRe TR R A0 .

Owing to the presence of the Burgers teﬁ%‘%, equation (12) describes homogeneous and dissipativenpfas
Therefore, the phase paths of such equation are, in generkdnger level curves of an ener&¢,, %). So, in

the dissipative case, it is reasonable to deal \%ﬂftmather thark. The KP-Burgers equation (15) can be written in
the general form

d ¢1 d¢1 dgs

# (g1, =) + G(6:) = (16)
whereh andG are two functions that can be determlned by comparing thatems (15) and (16). In the conser-
vative caself = 0), the total energy associated with equation (16) is

1 dos

E=3(g

5(5.)° + V@), (17)

whereV(¢1) is the potential function and then

dE  d¢y (dPp1  dV
&= (o an) (18)
If 37‘5’1 = G(¢1) and in connection with equation (16) the total derivatit&as
dE des ., (de1)
-n(en, 3| (19)
dy dy

which is a decreasing function for the variaflé h > 0. This equation is very important for studying the stapilit
of the system.

In our casei;- de corresponds to KP-Burgers equation follows

95_5@@f 20)

dy R\dy

which shows that the energy of the plasma system is not ceedemd hence it is not easy to find out exact
analytical solution of KP-Burgers equation.

In terms fo the viscosity cdicientr, equation (20) can be written as

s (2) @)
2 dy

which is always a decreasing function sirfa@1)?, 7. and. are positive quantities.

Particularly, if the Burgers cdicientF = 0, the system of equations becomes conservag@/e:(O) and the total
energy is

}(%) (UO Q)¢1 n R"ﬁ - E, (22)

dy
where the potential functiovi(¢,) is

3 (Uo Q)

V(o) = o & 23
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Equations (22) and (23) are necessary to furnish the bifiorcaf phase portrait associated with this type of KP-
Burgers equation. The profile of the phase portrait and thenpial function are investigated under the condition
R> 0 and ¢o — Q) > 0 and they are shown graphically in Figures (1) and (2).

V(1)

-038

Figure 1. The variation 0¥(¢1) against,for different values of for a = 4, 99 = 3,0 = 0.1.
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Figure 2. The variation 0%“’71 agains; for different values oE fora = 2, 99 = 3,0 = 0.1, k = 2.

Clearly, as shown in Figure (1), the potential diagram hasfixed points at (00) and (@, 0). The hump point

at (0, 0) represents unstable saddle point whereas the centeab()iﬁ‘)s’—@, 0) is a stable point. The corresponding
phase plantéqsl, %’)’;) is shown Figure (2), it obviously also has a center pointg‘é(g(@,O) and unstable saddle

point at (Q 0). From the topology of the phase portrait, one can seetibat is a homoclinic orbit at () enclosing
the center %@, 0) that corresponds to solitary wave solution. MoreoveguFeé (2) shows a series of bounded
open orbits that refer to a series of breaking wave solutidhese trajectories that shown in Fig. (2) refer to the
existence of stable solitonic solution that satisfy thedition ‘(‘127‘2’ <Oat¢;=0 when@ > 0.

1
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Figure 3. The variation ap; againsyy for different values o for @ = 2, 99 = 4,k = 3.
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Figure 5. The variation af; againsiy for different values of for @ = 2, 99 = 4, 0 = 0.1
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Figure 6. The variation oElectric Field againsyy for different values of for « = 2, 99 = 4,0 = 0.1.

In the absence of Burgers term, we obtain solitary wave sol@#nd periodic traveling wave solution of equation
(15) depending on some particular values of the parameters.

(1) When the plasma parameters satisfy the conditi@ﬁ@ > 0 (see Figures 3 and 5), the system equation (15)
has stable solitonic solution of the form

_ 30— Q) 1 [(vo-Q)
pr="g wchz[é ‘liR ){)- (24)

The soliton energ¥, is obtained according to the integral
£ [ (a0 + #5w) o (25)

In connection with equations (9) and (24) the above equadiozadily integrated and yields the following form of
the soliton energy

o _ 482B2 Qo)

" [CQ)
SZ RO

It is clear that, the soliton energy depends mainly on therptaparameters via the dbeientsQ, R andS (see
Figures 8 and 9).

(26)

However, the associated electric field is obtained accgrttirthe relation
Electric Field = —V¢;. (27)

The electric field is plotted againgtand its behaviour is shown graphically in Figures (4) and (6)
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Figure 7. The variation af; againsty for different values o for @ = 2, 99 = 0.3,k = 3.

(2) When the plasma parameters satisfy the conditﬂéﬁgﬁ < 0 (see Figure 7), the system equation (15) has
periodic traveling wave solution given by

o1 = 3(UOS— Q Secz[ - / —(UOR— Q)X)‘ 28)

On the other hand, in the presence of Burgers tefimg, 0, the system of equations is dissipative and the total
energ)E is not conservative. In this case, the exact solution of equation (15) can be constructed by me&ers of di

ent mathematical methods (El-Hanbaly, 2003; El-Hanbaly & Abdou, 2006; Mahmood & Ur-Rehman, 2010; Dutta
et al., 2012; El-Wakil et al., 2014b). Among those, the tanh method has been proved as a powerful mathematical
technique for solving nonlinear partialftérential equations.

Following the procedure of the tanh method (Malfiet & Hereman, 1996), we consider the solution in the following
form

N
1= a,tanh’(y), (29)
n=0

where the coféicientsa, andN should be determined. Balancing the nonlinear and dispersion terms in equation
(15), we obtairN = 2. Substituting equation (29) into equation (15) and equating to zero fileeafit coéficients
of different powers of tanh{ functions, one can obtain the following set of algebraic equations

2a, — (UOF;Q)ao+ %a§+gal = 0
—2a; — (UO—F;Q)al + %aoal + 2F':az = 0,
—8a, — (UOF; Q) a + %af + gaoaz - Eal = 0,
2a; + %alaz - %az = 0,
6ay + %aﬁ = 0. (30)

72



www.ccsenet.orgr Applied Physics Research Vol. 8, No. 1; 2016

Solving these set of algebraic equations, one gets

(w-Q)  8R F?
s s "R

aQ =

N . 1F
1 - 58 >
L _ TR
2 = S
F = 10R
vo = Q+24R G1)

With the knowledge of the above dieients, one can write down the explicit solution of the KP-Burgers equation
(15) in terms of tanh function

(lo-Q) B8R  F2 12F

01= e + o+ pem + o tanh(y) - tanhz()() (32)
or
2
1= é (o— Q) - 4R+ 2F5R - % tanh(y) + 12Rsecﬁ(,\/)). (33)

This class of solution represents a particular combination of a solitary veaste?(y) term on the right hand side
of equation (33) with a Burgers shock wave tap)hterm]. The behaviour of this solution is shown graphically as
in Figure (10).
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Figure 8. The variation oE againsta anddg for o = 0.2,k = 3.

73



www.ccsenet.orgpr Applied Physics Research Vol. 8, No. 1; 2016

0.05

Figure 9. The variation of againsk ando for a = 2, ¢ = 4.
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Figure 10. The variation af; againsfy fora = 5,7, = 0.03,0 = 0.2,k = 2.5.

Another type of solution can be obtained when the dissipagvm is dominant over the dispersive term. In this
case, equation (15) reduces to the following nonlineardirder diterential equation

%_(UO—Q)¢_§
d¢ F "'T2F

@3, (34)

that admits the following solution

gy = 20=Q) exp(“£2x) (35)
1+Sexp@=2y)

or
_ (-Q)
B S

o1 [1+ tanh(% Wl (36)

This type of solution actually describes monotonic shockevand Figures (11-14) shows the structure of the
shock waves.
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On the other hand, another type of solution of special istecan be obtained if one considers the boundary

conditiony — +oo : % = % = 0. With this condition, one obtains the asymptotic solution
24 2

_ 20 =-Q)

be S

(37)
of the nonlinear KP-Burgers fiierential equation.

Using¢: = ¢ + ¢ for | ¢c [>| ¢ |, equation (15) can be linearized to the second order linggarential equation

d°¢ Fdp (vo-Q-~ _
w*‘ﬁ@‘l’ R ¢—0

(38)
The solution of the linear dierential equation (38) can be expressed in the exponeatialf = exp(My), where

M is defined by
_F . 4w -QR
M = R {—1_ \/(1 — )j. (39)
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ForF? <« 4(vo — Q) R, the oscillatory shock wave solution is given by

¢1 = ¢c + cOnst. exp(—ziRX) cos( N (UO—F;Q)X] . (40)

The behaviour of the obtained solution is shown graphidallyigure (15). In addition to oscillatory shock wave,
the KP-Burgers equation exhibits solitonic, monotoniccéhwave due to the Burgers term arises from the fluid
viscosity.

4. Results and discussion

The nonlinear EA solitary and shock waves in a homogeneaissyof unmagnetized collisionless plasma con-
sisted of a cold electron fluid and superthermal hot elestveying superthermal distribution and stationary
ions have been investigated. A reductive perturbation atetvas employed to obtain the Kadomtsev-Petviashvili-
Burgers equation.

In the present section, we have studied tieats of the physical parametergdensity ratio of cool electrons to
hot electron)« (the spectral index of supper thermal distribution) anftemperature ratio of cool electrons and
hot electrons) on the characteristics of electron acosstitary, periodic and shock waves.

In the absence of the Burgers terf € 0), Figure (1) shows that the potential function is sketchgdinstp,
for different values ok under the conditiolR > 0 and ¢ — Q) > 0 where the potential becomes deeper and
narrower as is decreased and it is clear that the potential well has ongphat (Q0) and a pit at @,O).

The corresponding phase portrait in the plang %"’71) under the conditiolR > 0 and ¢ — Q) > 0 is shown in

Fig. (2). Obviously, it has a center point él(i’%Q),O) and unstable saddle point at (). From the topology of
the phase portrait, one can see a family of periodic orbité%ﬂ, 0) which corresponds to a family of periodic
wave solutions and one homoclinic orbit at @) which refers to one solitary wave solution. Also, Figu2g (
shows a series of bounded open orbits that refer to a serl@galking wave solutions. The obtained solitary wave
solution (24) is plotted in Figures (3) and (5). These figslesw that only rarefactive soliton can exist where
the amplitude of the rarefactive soliton decreases witheiasing the value of- whereas the amplitude of the
rarefactive soliton increases with increasing the value dhe behavior of the periodic travelling wave solution
(28) is shown graphically as in Figure (7). The electric feddociated with electrostatic potentialis derived via
the relationElectric Field = —V¢,and its behavior is shown in Figs. (4) and (6). As shown in @&y.the electric
field decreases with increasing the value of the paransetehile Figure (6) indicates that the width (amplitude)
of the electric field increases (decreases) with an inangagilue of the parameter Moreover, the soliton energy
E is calculated according to equation (26). Figures (8) andsk®w that the soliton enerdy increases with
decreasing the values of « and also it increases with increasing the valuesafiddy.

In the presence of the Burgers terin ¢ 0), the KP-Burgers equation admits some solutions of playanter-

est which are related to monotonic, oscillatory, shock armdrabination between shock and soliton waves and
their behavior are shown graphically as in Figures (10-Thg dfect of viscosity cofficientrn; on the structure

of monotonic shock is clearly seen as in Figure (11) wherghw@@hhances with increasing the valuengf In
Figures (12-14), theftect of some plasma parameters like- anda on the existence of monotonic shocks is also
investigated. Figure (12), indicates that the monotonacklwave strength increases with increasing the value of
k. Butin Fig. (13), Both width and strength of shock waves dase with increasing the parameteiFigure (14),
indicates that the monotonic shock wave strength shrinkis thie increase af. Also, the shock waves have an
oscillatory profile as indicated in Figure (15) and it is cl&@at increasing the value of increases the amplitude
of oscillatory wave.

5. Conclusion

In this work, we have investigated the properties of the timensional nonlinear EA waves in a system of ho-
mogeneous, unmagnetized, collisionless and dissipatigena consisted of a cold electron fluid and superthermal
hot electrons obeyingvelocity distribution, and stationary ions.

By means of reductive perturbation method, the basic seuaf 8quations are reduced to the nonlinear partial
differential KP-Burgers equation which is not integrable Heomiln system. This means that the energy of plasma
system is not conserved due to the dissipative Burgers frisimplies that finding exact solutions of KP-Burgers
equation is impossible in general case. Therefore, in teerate of Burgers term the equation becomes integrable

7
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and one can easily write downffirent types of explicit solutions. The obtained solutiomesralated to the soliton
solution and the periodic travelling wave solution.

This type of solution is obtained when the dissipatiffeet is negligible in comparison with that of the nonlinearit
and dispersion. Also, we calculated the solitonic energlthe electric field.

Based on the topology of phase portrait and potential dragreay predict wide classes of the travelling wave
solutions of KP-Burgers equation.

In the presence of the Burgers terf £ 0), KP-Burgers equation exhibits monotonic and oscillagirock wave
solutions. The monotonic shock wave can exist when thepditige term is dominant over the dispersive term
while the oscillatory shock wave exists when dispersivetisrdominant over the dissipative term.

Another important type of solution can be established bggisangent hyperbolic (tanh) method. This solution is
a combination between shock and soliton waves and exists thieedispersive and dissipative ¢oeents remain
finite in comparison with each other.

Finally, itis emphasized that the present investigatiog bwhelpful in better understanding of waves propagation
in the astrophysical plasmas as well as in inertial confingrmesion laboratory plasmas.
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