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Abstract

The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous
system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons
obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method
was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical
interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their
behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers
term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of
solution which is a combination between shock and soliton waves is obtained . The topology of phase portrait and
potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can
predict different classes of the travelling wave solutions according to different phase orbits. The obtained results
may be helpful in better understanding of waves propagation in various space plasma environments as well as in
inertial confinement fusion laboratory plasmas.

Keywords: electron-acoustic solitary and shock waves; reductive perturbation method; Kadomstev-Petviashvili-
Burgers equation

1. Introduction

Recently, there has been much interest in studying different types of the nonlinear phenomena in plasma physics
because of their importance in the environment of space and in laboratory plasma. As the shock and soliton waves
in plasma offer a rich physical insight underlying the nonlinear phenomena, studying these types of waves are
of particular interest for many researchers (Mamun and Shukla 2009; Samanta et al. 2013; Hussain et al. 2013;
Tribeche and Bacha 2013). The nonlinear electron-acoustic solitary and shock waves have been tested in laboratory
devices when the plasma consisted of two temperature electrons, referred to as hot and cold electrons (Ikezawa
and Nakamura 1981; Watanabe and Taniuti 1977). Electron-acoustic (EA) mode has been observed in the Earth’
magnetosphere by many satellites, e.g. Viking, FAST etc. (Dubouloz et al. 1991; Cattell et al. 1998; Ergun et al.
1999; Pottelette et al. 1999; Miyake et al. 2000). Therefore, the EA waves and their attributes have been the subject
of many researches (see, for example, Dubouloz et al. 1991; Berthomier et al. 2000; Mamun and Shukla 2002;
Kakad et al. 2007; El-Shewy 2011; Sabry and Omran 2013) in plasma physics. Kakad et al. (2009) investigated
the effect of two temperature ions on the nonlinear evolution of small amplitude EA waves for the three-component
plasma consisting of cold electron, low and high temperature ions. They showed that the estimated electric field
of the electrostatic structure is in good agreement with the observed solitary wave structures in the Earth’s plasma
sheet boundary layer. Pakzad and Tribeche (2010) studied the effect of electron nonthermality on the existence
and possible realization of electron-acoustic solitary waves using Sagdeev’s pseudopotential technique. Sahu and
Roychoudhurya (2012) have studied the nonlinear wave structures of EA waves in an unmagnetized quantum
plasma consisting of cold and hot electrons and ions. They investigated the quantum correction of the EA waves
and examined the effects of quantum diffraction and Mach number on the nonlinear properties of EA solitary waves
by using the quantum hydrodynamic model.
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Because the plasma particles in many cases show deviation from Maxwell- Boltzmann distribution then the phys-
ical velocity distributions can be characterized by a non-Maxwellian distribution function specially in a high en-
ergy tail (Chatterjee et al., 2010; Choi et al., 2011). As a generalization of the Maxwell- Boltzmann distribution,
we introduce Kappa (superthermal) distribution function that describes the superthermal particles. The Kappa dis-
tribution as a power-law function was introduced initiallyfor describing particles in plasmas out of the thermal
equilibrium (i.e., electrons with the speed faster than thethermal speed) such as in the Magnetosphere environ-
ment, Solar wind, the corona and other space plasmas (Maksimovic et al., 1997; Zouganelis, 2008). In their work,
Pierrard and Lazara (2010) investigated the theory and applications of Kappa distributions, detection, generation,
existence, properties, and its application in space plasmas.

Normally, the reductive perturbation technique has been used to reduce the equations of plasma system to a sin-
gle nonlinear partial differential equation. One of the most important type is the two-dimensional Kadomtsev –
Petviashvili (KP) equation. This equation has been used extensively to study different physical phenomena arises
in many field of physics, fluid mechanics, plasma physics and gas dynamics. Borhanian and Shahmansouri (2012)
investigated the appearance of nonlinear electron–acoustic solitary waves in an unmagnetized and collisionless
plasma comprising cool electrons, kappa distributed hot electrons and stationary ions in nonplanar geometry. They
derived the variable coefficient KP equation that governs the evolution of scalar potential describing propagation of
EA waves. Also, the influence of superthermality and geometry on the properties of EA solitary waves is discussed.
Very recently, Elwakil et al. (2014a) investigated the electron-acoustic soliton energy of the KP equation at critical
ion density in an unmagnetized collisionless plasma consisted of a cold electron fluid, low temperature ions and
high temperature ions obeying Boltzmann type distributions. It was founded that, the presence of ions densityµ
and the directional cosineL not only significantly modify the basic properties of solitary structure, but also change
the polarity of the solitary profiles.

In the plasmas medium, if the dissipation is weak at the characteristic dynamical time scales of the system, then
the formation of solitary structures which develop as a result of balance between nonlinearity and dispersion of
the plasma medium are generated. Also it is well known that inpresence of some dissipative mechanism appears
due to the fluid viscosity of the plasma medium, the balance between nonlinearity and dissipation may lead to the
genesis of shock waves. Shock waves have been studied by numerous papers in many type of plasma (Gupta et
al., 2001; Tribeche & Bacha, 2010). Most of these studies have been confined to Maxwell-Boltzmann distributed
electrons and ions, while in space plasmas particles distributions are usually non-Maxwellian, and may be modeled
by the so-called kappa or suprathermal distribution (Summers & Thorne, 1991; Hellberg et al., 2009; Baluku et al.,
2010). El-Shewy and Abdelwahed (2013) studied the effect of nonthermality of hot electrons on the propagation
and shape of EA waves in an unmagnetized collisionless plasma and obtained the soliton and shock waves as a
small-amplitude approximation.

In this article, we consider a homogeneous system of an unmagnetized, collisionless and dissipative plasma which
consisted of a cold electron fluid, superthermal hot electrons obeying superthermal distribution and stationary
ions. With such type of plasma, we are motivated to study the behaviour of electrostatic nonlinear structures such
as solitons, monotonic as well as oscillatory shocks formation through the two dimensional modified KP- Brugers
equation. Also, we investigate the bifurcation and phase portrait of the KP-Brugers equation in order to recognize
different classes of nonlinear waves.

The layout of this paper is organized as follows: In Sect. 2, we present the basic set of fluid equations for the
system and KP-Burgers equation has been derived by employing the reductive perturbation method. In Sec. 3, The
stationary solitary wave solution, monotonic shock wave solution, and oscillatory shock solution of the KP-Burgers
equation and their basic features are studied. In Sect. 4, the results are presented and discussed. Finally, a summary
of our findings and conclusions is given in Sect. 5.

2. Basic Equation and KP-Burgers Equation

We consider a homogeneous system of unmagnetized, collisionless plasma consisted of a cold electron fluid and
superthermal hot electrons obeying superthermal distribution, and stationary ions. Such a two-dimensional system
is governed by the following equations (Danehkar et al., 2011):

∂n
∂t
+
∂

∂x
(n ux) +

∂

∂y
(n ϑy) = 0, (1)
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∂ux

∂t
+ ux

∂ux

∂x
+ ϑy

∂ux

∂y
−
∂φ

∂x
+
σ

n
∂p
∂x
− η0

(

∂2

∂x2
+
∂2

∂y2

)

ux = 0, (2)

∂ϑy

∂t
+ ux

∂ϑy

∂x
+ ϑy

∂ϑy

∂y
−
∂φ

∂y
+
σ

n
∂p
∂y
− η0

(

∂2

∂x2
+
∂2

∂y2

)

ϑy = 0, (3)

(

∂

∂t
+ ux

∂

∂x
+ ϑy

∂

∂y

)

p + 3p

(

∂ux

∂x
+
∂ϑy

∂y

)

= 0, (4)

the suprathermal electron density is given by :

nh =













1−
φ

κ − 3
2













−κ+ 1
2

, (5)

where the real numberκ is the spectral index that measure the deviation from the standard Maxwell-Boltzmann
distribution (which is recovered in the limitκ→ ∞).

Equations (1-5) are supplemented by Poisson’s equation,

∂2φ

∂x2
+
∂2φ

∂y2
− n − αnh + (1+ α) = 0. (6)

In the earlier equationsn, ux (ϑy) andp denote the cool electron fluid density, velocity inx-direction (velocity in
y-direction) and pressure variables normalized with respect tonc,0, cth = [kBTh/me]1/2 andnc,0kBTc, respectively.
Time and space were scaled by the plasma periodω−1

pc = (nc,0e2/ε0me)−1/2 and the characteristic lengthλ0 =

(ε0kBTh/nc,0e2)1/2, respectively. Whereε0 is the permittivity constant,e is the elementry charge andme is the
electron mass. Finally,φ is the wave potential scaled bykBTh/e. We have defined the temperature ratio of the
cool to the hot electrons asσ = Tc/Th with (Tc refers to the temperature of cold electrons andTh refers to the
temperature of hot electrons) ,α refer to the initial equilibrium density of hot electrons and cold electron,η0 refers
to the viscosity coefficient andx andy are the space co-ordinates andt is the time variable.

Equations (1) and (2) represent the inertia of cold electron and equation (6) is the poisson equation need to make
the self consistent, the electron density described by superthermal distributions given by equation (5).

Now, to obtain the KP-Burgers equation from equations (1-6) we use the reductive perturbation technique (Washimi
and Taniuti 1966). The slow stretched co-ordinates are defined as:

τ = ǫ3t, ξ = ǫ(x − λt), ζ = ǫ2 y, (7)

whereǫ is a small dimensionless expansion parameter andλ is the phase velocity of EA waves. All physical
quantities appearing in (1-6) are expanded as power series inǫ about their equilibrium values as:

n = 1+ ǫ2n1 + ǫ
4n2 + ǫ

6n3 + ...,

ux = ǫ2ux1 + ǫ
4ux2 + ǫ

6ux3 + ...,

ϑy = ǫ3ϑy1 + ǫ
5ϑy2 + ǫ

7ϑy3 + ...,

φ = ǫ2φ1 + ǫ
4φ2 + ǫ

6φ3 + .... (8)
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p = 1+ ǫ2p1 + ǫ
4p2 + ǫ

6p3 + ... (9)

We impose the boundary conditions that as|ξ| → ∞, n = p = 1,ux = ϑy = φ = 0. Substituting equations (7) and
(8) into equations (1-6), and equating coefficients of like powers ofǫ. Then, from the lowest-order equations inǫ,
the following results are obtained :

n1 =
1

3σ − λ2
φ1, ux1 =

λ

3σ − λ2
φ1, p =

3
3σ − λ2

. (9)

Poisson’s equation gives the compatibility condition

αβ1λ
2 − 3σαβ1 − 1 = 0. (10)

The higher orders inǫ yields the following set of equations :

∂n1

∂τ
− λ
∂n2

∂ξ
+
∂

∂ξ
(n1 ux1) +

∂ux2

∂ξ
+
∂ϑy1

∂ζ
= 0,

∂ux1

∂τ
+ ux1

∂ux1

∂ξ
− λ
∂ux2

∂ξ
−
∂φ2

∂ξ
− σn1

∂p1

∂ξ
+ σ
∂p2

∂ξ
− η1
∂2ux1

∂ξ2
= 0,

−λ
∂ϑy1

∂ξ
−
∂φ1

∂ζ
+ σ
∂p1

∂ζ
= 0,

∂p1

∂τ
− λ
∂p2

∂ξ
+ ux1

∂p1

∂ξ
+ 3p1

∂ux1

∂ξ
+ 3
∂ux2

∂ξ
+ 3
∂ϑy1

∂ζ
= 0,

−αβ2φ
2
1 − nx2 − αβ1φ2 +

∂2

∂ξ2
φ1 = 0. (11)

By Eliminating the second order perturbed quantitiesnc2 , ucx2, p2 andφ2 , we finally obtain the desired KP-Burgers
equation:

∂

∂ξ

(

∂

∂τ
φ1 + S φ1

∂

∂ξ
φ1 + F

∂2

∂ξ2
φ1 + R

∂3

∂ξ3
φ1

)

+ Q
∂2

∂ζ2
φ1 = 0, (12)

where

S =
−1
2λ













3(1+ 4ασβ1) +
2β2

αβ2
1













,

F =
−η1

2
,

R =
1

2(αβ1)2 λ
,

Q =
λ

2
,

β1 =
−

(

1
2 − κ

)

(

κ − 3
2

) , β2 =

(

1
2 − κ

) (

− 1
2 − κ

)

2
(

κ − 3
2

)2
. (13)
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3. Stationary solution

To study the traveling wave solutions of the modified KP equation (12), we introduce the following traveling wave
variable

χ = ξ + ζ − υ0τ, (14)

whereχ is the transformed coordinate relative to a frame which moves with the velocityυ0. By integrating equation
(12) with respect to the variableχ , the reduced KP-Burgers equation leads to

d2φ1

dχ2
+

F
R

dφ1

dχ
+

S
2R
φ2

1 +
(Q − υ0)

R
φ1 = 0, (15)

Owing to the presence of the Burgers termF
R

dφ1

dχ , equation (12) describes homogeneous and dissipative plasmas.

Therefore, the phase paths of such equation are, in general,no longer level curves of an energyE(φ1,
dφ1

dχ ). So, in

the dissipative case, it is reasonable to deal withdE
dχ rather thanE. The KP-Burgers equation (15) can be written in

the general form

d2φ1

dχ2
+ h(φ1,

dφ1

dχ
)
dφ1

dχ
+G(φ1) = 0, (16)

whereh andG are two functions that can be determined by comparing the equations (15) and (16). In the conser-
vative case (h = 0), the total energy associated with equation (16) is

E =
1
2

(
dφ1

dχ
)2 + V(φ1), (17)

whereV(φ1) is the potential function and then

dE
dχ
=

dφ1

dχ

(

d2φ1

dχ2
+

dV
dφ1

)

. (18)

If dV
dφ1
= G(φ1) and in connection with equation (16) the total derivative of E is

dE
dχ
= −h(φ1,

dφ1

dχ
)

(

dφ1

dχ

)2

, (19)

which is a decreasing function for the variableχ if h > 0. This equation is very important for studying the stability
of the system.

In our case,dE
dχ corresponds to KP-Burgers equation follows

dE
dχ
=

F
R

(

dφ1

dχ

)2

, (20)

which shows that the energy of the plasma system is not conserved and hence it is not easy to find out exact
analytical solution of KP-Burgers equation.

In terms fo the viscosity coefficientη1, equation (20) can be written as

dE
dχ
= −η1 (αβ1)2 λ

(

dφ1

dχ

)2

, (21)

which is always a decreasing function since(αβ1)2, η1 andλ are positive quantities.

Particularly, if the Burgers coefficientF = 0, the system of equations becomes conservative (dE
dχ = 0) and the total

energy is
1
2

(

dφ1

dχ

)2

−
(υ0 − Q)

2R
φ2

1 +
S
6R
φ3

1 = E, (22)

where the potential functionV(φ1) is

V(φ1) =
S
6R
φ3

1 −
(υ0 − Q)

2R
φ2

1. (23)
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Equations (22) and (23) are necessary to furnish the bifurcation of phase portrait associated with this type of KP-
Burgers equation. The profile of the phase portrait and the potential function are investigated under the condition
R > 0 and (υ0 − Q) > 0 and they are shown graphically in Figures (1) and (2).

Figure 1. The variation ofV(φ1) againstφ1for different values ofκ for α = 4, ϑ0 = 3, σ = 0.1.

Figure 2. The variation ofdφ1

dχ againstφ1 for different values ofE for α = 2, ϑ0 = 3, σ = 0.1, κ = 2.

Clearly, as shown in Figure (1), the potential diagram has two fixed points at (0, 0) and (2(υ0−Q)
S , 0). The hump point

at (0, 0) represents unstable saddle point whereas the center point at (2(υ0−Q)
S , 0) is a stable point. The corresponding

phase plane
(

φ1,
dφ1

dχ

)

is shown Figure (2), it obviously also has a center point at (2(υ0−Q)
S , 0) and unstable saddle

point at (0, 0). From the topology of the phase portrait, one can see that there is a homoclinic orbit at (0, 0) enclosing
the center (2(υ0−Q)

S , 0) that corresponds to solitary wave solution. Moreover, Figure (2) shows a series of bounded
open orbits that refer to a series of breaking wave solutions. These trajectories that shown in Fig. (2) refer to the
existence of stable solitonic solution that satisfy the condition d2V

dφ2
1
< 0 atφ1 = 0 when (υ0−Q)

R > 0.
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Figure 3. The variation ofφ1 againstχ for different values ofσ for α = 2, ϑ0 = 4, κ = 3.

Figure 4. The variation ofElectric Field againstχ for different values ofσ for α = 2, ϑ0 = 4, κ = 3.

Figure 5. The variation ofφ1 againstχ for different values ofκ for α = 2, ϑ0 = 4, σ = 0.1.
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Figure 6. The variation ofElectric Field againstχ for different values ofκ for α = 2, ϑ0 = 4, σ = 0.1.

In the absence of Burgers term, we obtain solitary wave solution and periodic traveling wave solution of equation
(15) depending on some particular values of the parameters.

(1) When the plasma parameters satisfy the conditions(υ0−Q)
R > 0 (see Figures 3 and 5), the system equation (15)

has stable solitonic solution of the form

φ1 =
3(υ0 − Q)

S
sech2















1
2

√

(υ0 − Q)
R

χ















. (24)

The soliton energyEn is obtained according to the integral

En =

∫ ∞

−∞

(

u2
x1(χ) + ϑ2

y1(χ)
)

dχ. (25)

In connection with equations (9) and (24) the above equationis readily integrated and yields the following form of
the soliton energy

En =
48α2β2

1λ
2 (Q − ϑ0)

S 2
√

−(Q−ϑ0)
R

. (26)

It is clear that, the soliton energy depends mainly on the plasma parameters via the coefficientsQ, R andS (see
Figures 8 and 9).

However, the associated electric field is obtained according to the relation

Electric Field = −∇φ1. (27)

The electric field is plotted againstχ and its behaviour is shown graphically in Figures (4) and (6).
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Figure 7. The variation ofφ1 againstχ for different values ofσ for α = 2, ϑ0 = 0.3, κ = 3.

(2) When the plasma parameters satisfy the conditions(υ0−Q)
R < 0 (see Figure 7), the system equation (15) has

periodic traveling wave solution given by

φ1 =
3(υ0 − Q)

S
sec2















1
2

√

−(υ0 − Q)
R

χ















. (28)

On the other hand, in the presence of Burgers term,,F , 0, the system of equations is dissipative and the total
energyE is not conservative. In this case, the exact solution of equation (15) can be constructed by means of differ-
ent mathematical methods (El-Hanbaly, 2003; El-Hanbaly & Abdou, 2006; Mahmood & Ur-Rehman, 2010; Dutta
et al., 2012; El-Wakil et al., 2014b). Among those, the tanh method has been proved as a powerful mathematical
technique for solving nonlinear partial differential equations.

Following the procedure of the tanh method (Malfiet & Hereman, 1996), we consider the solution in the following
form

φ1 =

N
∑

n=0

an tanhn(χ), (29)

where the coefficientsan andN should be determined. Balancing the nonlinear and dispersion terms in equation
(15), we obtainN = 2. Substituting equation (29) into equation (15) and equating to zero the different coefficients
of different powers of tanh (χ) functions, one can obtain the following set of algebraic equations

2a2 −
(υ0 − Q)

R
a0 +

S
2R

a2
0 +

F
R

a1 = 0,

−2a1 −
(υ0 − Q)

R
a1 +

S
R

a0a1 +
2F
R

a2 = 0,

−8a2 −
(υ0 − Q)

R
a2 +

S
2R

a2
1 +

S
R

a0a2 −
F
R

a1 = 0,

2a1 +
S
R

a1a2 −
2F
R

a2 = 0,

6a2 +
S
2R

a2
2 = 0. (30)
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Solving these set of algebraic equations, one gets

a0 =
(υ0 − Q)

S
+

8R
S
+

F2

25S R
,

a1 =
12F
5S
,

a2 =
−12R

S
,

F = ±10R,

υ0 = Q ± 24R. (31)

With the knowledge of the above coefficients, one can write down the explicit solution of the KP-Burgers equation
(15) in terms of tanh function

φ1 =
(υ0 − Q)

S
+

8R
S
+

F2

25S R
+

12F
5S

tanh(χ) −
12R
S

tanh2(χ), (32)

or

φ1 =
1
S

(

(υ0 − Q) − 4R +
F2

25R
+

12F
5

tanh(χ) + 12Rsech2(χ)
)

. (33)

This class of solution represents a particular combination of a solitary wave [sech2(χ) term on the right hand side
of equation (33) with a Burgers shock wave tanh(χ) term]. The behaviour of this solution is shown graphically as
in Figure (10).

Figure 8. The variation ofE againstα andϑ0 for σ = 0.2, κ = 3.
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Figure 9. The variation ofE againstκ andσ for α = 2, ϑ0 = 4.

Figure 10. The variation ofφ1 againstχ for α = 5, η1 = 0.03, σ = 0.2, κ = 2.5.

Another type of solution can be obtained when the dissipative term is dominant over the dispersive term. In this
case, equation (15) reduces to the following nonlinear firstorder differential equation

dφ1

dχ
=

(υ0 − Q)
F

φ1 −
S
2F
φ2

1, (34)

that admits the following solution

φ1 =
2(υ0 − Q) exp((υ0−Q)

F χ)

1+ S exp((υ0−Q)
F χ)

, (35)

or

φ1 =
(υ0 − Q)

S
[1 + tanh(

(υ0 − Q)
2F

χ)]. (36)

This type of solution actually describes monotonic shock wave and Figures (11-14) shows the structure of the
shock waves.
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Figure 11. The variation ofφ1 againstχ for different values ofη1 for α = 2, ϑ0 = 0.5, σ = 0.1, κ = 3.

Figure 12. The variation ofφ1 againstχ for different values ofκ for α = 2, ϑ0 = 0.4, η1 = 0.01, σ = 0.05.

Figure 13. The variation ofφ1 againstχ for different values ofσ for α = 2, ϑ0 = 0.4, η1 = 0.01, κ = 3.
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Figure 14. The variation ofφ1 againstχ for different values ofα for ϑ0 = 0.4, η1 = 0.015, σ = 0.1, κ = 3.

Figure 15. The variation ofφ1 againstχ for different values ofσ for α = 5, ϑ0 = 4, η1 = 0.03, κ = 2.5.

On the other hand, another type of solution of special interest can be obtained if one considers the boundary

conditionχ→ ±∞ : d2φ1

dχ2 =
dφ1

dχ = 0. With this condition, one obtains the asymptotic solution

φc =
2(υ0 − Q)

S
, (37)

of the nonlinear KP-Burgers differential equation.

Usingφ1 = φc + φ̃ for | φc |≫| φ̃ |, equation (15) can be linearized to the second order linear differential equation

d2φ̃

dχ2
+

F
R

dφ̃
dχ
+

(υ0 − Q)
R

φ̃ = 0. (38)

The solution of the linear differential equation (38) can be expressed in the exponential form φ̃ = exp(Mχ), where
M is defined by

M =
F
2R















−1±

√

(1−
4(υ0 − Q) R

F2
)















. (39)
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For F2 ≪ 4(υ0 − Q) R, the oscillatory shock wave solution is given by

φ1 = φc + const. exp
(

−
F
2R
χ

)

cos















√

(υ0 − Q)
R

χ















. (40)

The behaviour of the obtained solution is shown graphicallyin Figure (15). In addition to oscillatory shock wave,
the KP-Burgers equation exhibits solitonic, monotonic shock wave due to the Burgers term arises from the fluid
viscosity.

4. Results and discussion

The nonlinear EA solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma con-
sisted of a cold electron fluid and superthermal hot electrons obeying superthermal distribution and stationary
ions have been investigated. A reductive perturbation method was employed to obtain the Kadomtsev-Petviashvili-
Burgers equation.

In the present section, we have studied the effects of the physical parametersα (density ratio of cool electrons to
hot electron),κ (the spectral index of supper thermal distribution) andσ (temperature ratio of cool electrons and
hot electrons) on the characteristics of electron acousticsolitary, periodic and shock waves.

In the absence of the Burgers term (F = 0), Figure (1) shows that the potential function is sketchedagainstφ1

for different values ofκ under the conditionR > 0 and (υ0 − Q) > 0 where the potential becomes deeper and
narrower asκ is decreased and it is clear that the potential well has one hump at (0, 0) and a pit at (2(υ0−Q)

S , 0).

The corresponding phase portrait in the plane (φ1,
dφ1

dχ ) under the conditionR > 0 and (υ0 − Q) > 0 is shown in

Fig. (2). Obviously, it has a center point at (2(υ0−Q)
S , 0) and unstable saddle point at (0, 0). From the topology of

the phase portrait, one can see a family of periodic orbits at( 2(υ0−Q)
S , 0) which corresponds to a family of periodic

wave solutions and one homoclinic orbit at (0, 0) which refers to one solitary wave solution. Also, Figure (2)
shows a series of bounded open orbits that refer to a series ofbreaking wave solutions. The obtained solitary wave
solution (24) is plotted in Figures (3) and (5). These figuresshow that only rarefactive soliton can exist where
the amplitude of the rarefactive soliton decreases with increasing the value ofσ whereas the amplitude of the
rarefactive soliton increases with increasing the value ofκ. The behavior of the periodic travelling wave solution
(28) is shown graphically as in Figure (7). The electric fieldassociated with electrostatic potentialφ1 is derived via
the relationElectric Field = −∇φ1and its behavior is shown in Figs. (4) and (6). As shown in Fig.(4), the electric
field decreases with increasing the value of the parameterσ while Figure (6) indicates that the width (amplitude)
of the electric field increases (decreases) with an increasing value of the parameterκ. Moreover, the soliton energy
E is calculated according to equation (26). Figures (8) and (9) show that the soliton energyE increases with
decreasing the values ofσ, α and also it increases with increasing the values ofκ andϑ0.

In the presence of the Burgers term (F , 0), the KP-Burgers equation admits some solutions of physical inter-
est which are related to monotonic, oscillatory, shock and acombination between shock and soliton waves and
their behavior are shown graphically as in Figures (10-15).The effect of viscosity coefficientη1 on the structure
of monotonic shock is clearly seen as in Figure (11) where width enhances with increasing the value ofη1. In
Figures (12-14), the effect of some plasma parameters likeκ, σ andα on the existence of monotonic shocks is also
investigated. Figure (12), indicates that the monotonic shock wave strength increases with increasing the value of
κ. But in Fig. (13), Both width and strength of shock waves decrease with increasing the parameterσ. Figure (14),
indicates that the monotonic shock wave strength shrinks with the increase ofα. Also, the shock waves have an
oscillatory profile as indicated in Figure (15) and it is clear that increasing the value ofσ increases the amplitude
of oscillatory wave.

5. Conclusion

In this work, we have investigated the properties of the two-dimensional nonlinear EA waves in a system of ho-
mogeneous, unmagnetized, collisionless and dissipative plasma consisted of a cold electron fluid and superthermal
hot electrons obeyingκ velocity distribution, and stationary ions.

By means of reductive perturbation method, the basic set of fluid equations are reduced to the nonlinear partial
differential KP-Burgers equation which is not integrable Hamiltonian system. This means that the energy of plasma
system is not conserved due to the dissipative Burgers term.This implies that finding exact solutions of KP-Burgers
equation is impossible in general case. Therefore, in the absence of Burgers term the equation becomes integrable
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and one can easily write down different types of explicit solutions. The obtained solutions are related to the soliton
solution and the periodic travelling wave solution.

This type of solution is obtained when the dissipative effect is negligible in comparison with that of the nonlinearity
and dispersion. Also, we calculated the solitonic energy and the electric field.

Based on the topology of phase portrait and potential diagram may predict wide classes of the travelling wave
solutions of KP-Burgers equation.

In the presence of the Burgers term (F , 0), KP-Burgers equation exhibits monotonic and oscillatory shock wave
solutions. The monotonic shock wave can exist when the dissipative term is dominant over the dispersive term
while the oscillatory shock wave exists when dispersive term is dominant over the dissipative term.

Another important type of solution can be established by using tangent hyperbolic (tanh) method. This solution is
a combination between shock and soliton waves and exists when the dispersive and dissipative coefficients remain
finite in comparison with each other.

Finally, it is emphasized that the present investigation may be helpful in better understanding of waves propagation
in the astrophysical plasmas as well as in inertial confinement fusion laboratory plasmas.
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