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Abstract 
A new definition of the inverse operator of any operator which applies a space of differentiable functions onto 
itself is proposed and a formula changing the operator ( ) ( )f A g B where ˆAB BA I− ≡ into a sum of operators 

( ) ( )1
( ) ( )

!
k kg B f A

k
is proved. Thank to this relation between operators some formulae in integral calculus are found; 

a new and rapid method for resolutions of differential equations teached in universities is exposed in details. It is 

seen to be useful also for obtaining the differential operators say 21exp( )
4 xD− , ( 1)n

xD − , ( ) (1 )n n
xD α+− − ,

2

0 1
1(2 ) ( ; ; )
1 / 2 4n

BFλ
λ

− −
+

, cos B that transform monomials into Hermite, Laguerre, associated Laguerre, 

Gegenbauer, Chebyshev polynomials and for getting quasi all their main properties in a very concise manner. Is 
proposed also the differential representation of the Laplace transform permitting the differential calculus to 
prove consicely its properties. 
Keywords: Operational calculus, Inverse operators, Differential equations, Special functions, Laplace transform, 
Eigenfunctions, Newton binomial. 
1. Introduction
An application of a space of functions into itself is represented by an operator.  In this work we will consider 
operators representing linear applications of the space D of differentiable functions onto itself 

( ( ) ( )) ( ) ( ) , , ,A f x g x Af x Ag x f g Af Ag+ = + ∈D (1.1) 
( ( )) ( )A cf x cAf x= (1.2) 

The well known operators are certainly the derivative operator xD , the Eckart “multiply by the argument x” 
operator X̂ (Eckart, 1926) and the identity operator Î  

( ) '( ) ( )xD f x f x f x= ∀ (1.3) 

ˆ ( ) ( ) ( )Xf x xf x f x= ∀  (1.4) 

ˆ ( ) ( ) ( )If x f x f x= ∀ (1.5) 

The first remark to be notified is that A acts on the whole product of functions at his right 
( ) ( ) (( ) ( ))Af x g x Af x g x=  

The second remark is that 0A may be different from 0 for example 

0x x xe e ce− =
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so that in general Af is defined only within 0A  
 ( ) ( ( ) 0) ( ) 0Af x A f x Af x A= + = +  (1.6) 
Profoundly we think that (1.6) means that there is not at all determinism in a universe where the number zero 
exists. 
Two operators A and B are said equivalent if they give the same result when acting on an arbitrary function  
 ( ) ( )A B Af x Bf x f≡ ⇔ = ∀  (1.7) 
From this definition one may define the addition and the multiplication of operators as following 
 ( ) ( ) ( )C A B Cf x Af x Bf x f≡ + ⇔ = + ∀  (1.8) 
 ( ) ( ) ( ) ( ( )) ( )C AB Cf x AB f x A Bf x ABf x f≡ ⇔ = = = ∀  (1.9) 
Afterward one may define the operators /,n n mA A where n, m are positive integers and series of them. An example 
is the definition of xD ν by Riemann (Oldham & Spanier, 1974) 

 ( 1) ; ,
( 1)xD x xμ ν ν μν ν μ
ν μ

−Γ += ∈
Γ − +

C  (1.10) 

Two operators in general may do not commute i.e. AB may be different from BA . 
In order to clarify the above assertion, let us examine the following analysis.  
Because 

 ˆ ˆ ˆ( ) ( ) '( ) ( ) ( ) ( )x x xD Xf x D xf x xf x f x XD I f x f= = + = + ∀  

we get the relation between two operators  

 ˆ ˆ ˆ
x xD X XD I≡ +  (1.11) 

which shows that xD and X̂ do not commute. 
From now on a relation between operators will be called identity and that between two functions formula. 
There exists the notion of commutator of an ordered couple of operators ( , )A B  defined as follows 

 [ ],A B AB BA≡ −  (1.12) 

For example  

 ˆ ˆ ˆ ˆ,x x xD X D X XD I  ≡ − ≡   (1.13) 

Differential calculus consists in utilizing operators constructed from xD , X̂ , Î to study differential and partial 
differential equations, special functions and so on as we can find abundantly in literature from the time 
Heaviside (1893) published his invention of operational calculus. The non exhaustive list of references is (Eckart, 
1926; Wilcox, 1967; Abramovitz & Stegun, 196; Wolf, 1976; Do, 1978) and many others may be founded on the 
net by searching for operational calculus, hyperdifferential operators, etc….. 
In a recent work we have studied the transforms of functions and operators by exponential in linear and quadratic 
operators in xD and X̂ , named hyperdifferential operators (Do, 2015).  
Considering utilizing ordinary operators in differential calculus we meet firstly a huge difficulty which consists 
in the impossibility to define the inverse 1A− of an operator A by the identity 

 1 1A A AA− −≡  
in the case where A has the properties 

0 0A =  
and there exists a function ( ) 0V x ≠ such that 

( ) 0AV x =  
because in this case we have simultaneously 
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 1 10 ( ) ( )A A AV x V x− −= =  

and  

 1 10 0 0A A A− −= =  
which is paradoxal. 
And, without 1A− one can’t resolve the differential equation ( )Ay f x=  by writing 

 1 ( )y A f x−=  

The second difficulty is the lack of an identity which would help to put any operator ˆ( ) ( )
x

f D g X  into a sum of 
operators having the form ˆ( ) ( )

x
u X v D in order to deplace some operator inside a product of non commutative 

operators; to factorize a sum of operators such as ˆ( ( ))
x

D f X+ then invert it; to simplify the calculations of
ˆ( ) ( ) ( ) ( ) ( ) ( )

x x
f D g x h x f D g X h x= , etc… 

Willing to bypass these difficulties, this work aims to propose a free of paradox definition of the inverse operator
1A− of any operator A and to establish the fundamental identity of operational calculus 

( ) ( )

0

1( ) ( ) ( ) ( )
!

k k

k
f D g X g X f D

k

∞

=

=  

where ( , )D X is a couple operator obeying the condition ˆ( )DX XD I− ≡ .  
Afterward in order to convince readers and students about the worth of differential calculus we will apply these 
propositions to obtain formulae in the field of differential and integral calculus, to study the Laplace transform, 
to simplify greatly the resolution of differential equations teached in college and to get the differential operators 
which transform monomials into the Hermite, Laguerre, Gegenbauer, Chebyshev polynomials. Thank to these 
representative operators the main properties of these polynomials are deduced in a very concise manner. 
2. The Inverse Operator of an Opertor 
2.1 Definition  
Given A and let ( )iV x be one of the solutions of the differential equation 
 0Ay =  (2.1) 
Firstly we denote by 10A− the general solution of the above equation 

 10 ( )i i i
i

A c V x c− = ∀  (2.2) 

The entity 10A− is seen to be the kernel of A  

 10 ( ) 0i i i
i

AA c AV x c− = = ∀  (2.3) 

and has the particular property  

 1 1 10 ( 0) 0 0A A c cA c− − −= = ∀ ≠  (2.4) 

Secondly we propose to define the inverse operator 1A− of an operaror A by the relation  

   1 1( ) ( ) 0A Af x f x A f− −= + ∀  (2.5) 

With respect to this definition the primitive operator  defined by   

 0 1=  (2.6) 

 ( ) ( ) ( ) ( )xf x F x D F x f x f= ⇔ = ∀  (2.7) 

is the inverse of xD and vice versa 
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 ( ) ( ) 0xD f x f x= +   (2.8) 

 ( ) ( ) 0x xD f x f x D= +  (2.9) 

so that from now on we may write  

 1
xD − ≡   (2.10) 

For completion we remark that if we may write 

 10 0xD c− = =  (2.11) 

this is because 0 0c= and not because 1
xD − is undetermined. 

2.2 Properties 
(i) From the definition of inverse operators (2.5) we have 

1 10 0A A A− −=  
 1 1 1 1 1 1 10 0 0 0 2 0A AA A A A A A AA A− − − − − − −= + = =  
and may conclude that 

 1 1 10 0 0 0 0 0A A A A may be− − −=  =  ≠    (2.12) 

 1 1 10 0 0 0 0 0A A A A A− − −≠  =  =   (2.13) 
 10 0 0 0A A−≠  =  unless paradoxal with the previous assertion. (2.14) 

(ii) If 1A− is the inverse of A then A is the inverse of 1A−  

 1 1( )A A− − ≡  (2.15) 

Indeed, appplying A on both members of (2.15) we see that 

 1 1 1( ( )) ( ( ) 0) ( ) 0AA Af x A f x A Af x AA− − −= + = +  

For 0 0A = we get 

 1 ( ( )) ( ) 0 ( ) 0AA Af x Af x Af x A f− = + = + ∀  

For 0 0A ≠ we have 10 0A− =  and also get  

 1 1( ( )) ( ( ) 0) ( ) 0AA Af x A f x A Af x A− −= + = +    

(iii) nA− is the inverse of nA  
Let 

 1 1 1...nA A A A n times− − − −≡  

we will prove by recursion that nA− is the inverse of nA .  
For this purpose suppose that 

 ( ) ( ) 0n n nA A f x f x A− −= +  (2.16) 

so that 
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 1 1 1 1( ) ( ) ( ( ) 0)n n n n n nA A f x A A AA f x A A f x A− − + − − − −= = +  

             1( ) 0 0n nf x A A− − −= + +  

Remarking that 

 1 1 10 ( 0 0) 0 0n n n nA A A A A− − − − − − −= + = +  

we finally get 

 1 1 1( ) ( ) 0n n nA A f x f x A− − + − −= +      QED 

By the way we notify that 

 1 1 1 10 0 0 0 0 ... 0n n n n nA A A A A A− − − − − − − − −= + = + + +  (2.17) 

  (iv) 0, 0n m n mA A A n m+ ≡ ∀ ≥ ≥  (2.18) 

This is because both members are (n+m) times products of A .  

 0, 0n m n mA A A n m− − − −≡ ∀ ≥ ≥  

This is because both members are (n+m) times products of 1A−  

 (v) For 0 0A =  we have 1 ˆAA I− ≡  
so that 

 n m n mA A A− −≡ 0, 0n m∀ ≥ ≥  

Nevertheless if 0 0A = but 10 0A− ≠  

 n m n mA A A− + − +≠  

because in this case 

 ( ) ( ) ( ) 0 0n m n n n m n m nA A f x A A A f x A f x A m n− + − + − + − + −= = + ∀ ≥ ≥  

 ( ) ( ) ( ) 0n m n m m m n m n m mA A f x A A A f x A f x A A− + − + − + − + − + −= = +  

                             ( ) 0 0n m nA f x A n m− + −= + ∀ ≥ ≥ . 

With respect to the above properties we get the global formula valuable when 0 0A =  

 ( ) ( ( ) 0) ( ) 0 ,p q p q p q p qA A f x A A f x A f x A A p q Z+= + = + ∀ ∈  (2.19) 

2.3 Inversion of a Product of Operators AB  
From the definition of inverse operators (2.5) we may write 

1 1 1 1 1 1 1( ) ( ) ( ( ) 0) ( ) 0 0B A ABf x B Bf x A f x B B A− − − − − − −= + = + +    

Because 

 1 1 1 1 1 1 10 ( 0 0) 0 0B A B A B A B− − − − − − −= + = +  

we may conclude that 1 1B A− − is the inverse of AB  
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 1 1 1( )AB B A− − −≡   (2.20) 

2.4 Transform of a Product of Operators 
LetU be an operator and 1U − its inverse. The transform 'A byU of an operator A is defined by the identity 

  1'A UAU −≡   (2.21) 
From the definition of inverse operators () we may write 

 1 1 1 1 1 1( ) ( ( ) 0) ( ) 0UAU UBU f x UA BU f x U UABU f x UAU− − − − − −= + = +  

i.e.  
 ' ' ( ) ' '( ( ) 0) ' ' ( ) ' '0 ( ) ' ( ) '0A B f x A B f x A B f x A B AB f x A= + = + = +  
Because  
 ' '0 '( '0 0) ' '0 '0A B A B A B A= − = −   
we finally get the formula 
 ( ) ' ( ) ' ' ( ) ' '0 ' ' ( )AB f x A B f x A B A B f x f= + = ∀  (2.22) 
saying that the transform of a product of operators is the product of the transformed operators. 
3. The Fundamental Identity in Differential Calculus 

3.1 Proof of [ ]( ), '( )f D X f D≡  

In a space of functions let D and X be two operators verifying the relation 

 ˆDX XD I≡ +  (3.1)  
From (3.1) we may deduce the following 

 1,m m mD X XD mD m N−≡ + ∀ ∈  (3.2) 

simply by the algorithm based on the remark that according to (3.1), for a product of m operators D and one 
operator X , each time X  is moved from right to left of a nearby D we must add 1mD − to the result, so that after 
m such moves mD X  becomes mXD plus 1mD − . 
Identity (3.2) is valuable also in the case where m is a positive rational number.  Indeed, letY be an operator 
defined by 

 n mY D≡  (3.3) 
and suppose that we can find an operator ( )A D which depends only in D and such that 
 ( )YX XY A D≡ +   (3.4) 
The above algorithm may be utilized and gives  

 1( )n n nY X XY nA D Y −≡ +  (3.5) 

Replace nY with mD we have 

 
( 1)

( )
m nm m nD X XD nA D D

−
≡ +  (3.6)  

Comparing (3.6) with (3.2) we get 

( 1) 1( )
m n mnnA D D mD

− −≡  

so that (3.5) becomes 

 
1m m m

n n nmD X XD D
n

−
≡ +  (3.7) 

From the above identity we get also 
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1
m m
n n mD XD X D

n
− −≡ +  

 
1m m m

n n nmXD D X D
n

− − − −
≡ +  (3.8) 

Because a real number is the limit of two series of rational numbers we may assumed that (3.2) is also valuable 
for m real.  
From (3.2) we may conclude that if ( )f x is a differentiable function  

 ( ) m
m

m
f x a x m≡ ∀ ∈ℜ  (3.9) 

and '( )f x is its derivative function 

 1'( ) m
n

m
f x a mx m−≡ ∀ ∈ℜ  (3.10) 

we have the identity 
 ( ) ( ) '( )f D X Xf D f D≡ +  

 [ ]( ), '( )f D X f D≡  (3.11) 

which when apply on a function ( )g x must respect the primordial remark that 
 ( ) ( ) 0Ag x Ag x A= +  

3.2 Proof of ( )

0
( ) ( )

m
km m k

k

m
f D X X f D

k
−

=

 
≡  

 
  

From (3.11) we deduce successively that 

2 2( ) ( ( ) '( )) ( ) 2 '( ) "( )f D X Xf D f D X X f D Xf D f D≡ + ≡ + +  

3 3 2( ) ( ) 3 '( ) 3 "( ) '"( )f D X X f D X f D Xf D f D≡ + + +  

and so on for 4( )f D X , etc... Thank to this remark we suppose that 

 ( )

0
( ) ( )

m
km m k

k

m
f D X X f D

k
−

=

 ≡  
 

  (3.12)  

In order to prove (3.12) by recursion we utilize (3.11) to proceed 

 ( ) ( ) ( )11

0 0
( ) ( ) ( ( ) ( ))

m m
k k km m k m k

k k

m m
f D X X f D X X Xf D f D

k k
++ − −

= =

   
≡ ≡ +   

   
   

 ( ) ( )
1

1 1

0 1
( ( ) ( ))

1

m m
k km k m k

k k

m m
X f D X f D

k k

+
+ − − +

= =

   
≡ +   −   
   

     ( ) ( )11 1

1
( ) ( ) ( )) ( )

1

m
k mm m k

k

m m
X f D X f D f D

k k
++ − +

=

   
≡ + + +   −   

  

and get 

 ( )
1

1 1

0

1
( ) ( )

m
km m k

k

m
f D X X f D

k

+
+ + −

=

+ ≡  
 

   QED (3.13) 

Combining the above result and the fact that 0 0( ) ( )f D X X f D≡ we may conclude that (3.12) is correct.  
3.3 The Fundamental Identity in Differential Calculus 
Under the form (3.12) we can’t proceed further because the mixed coefficient ( )!m k− doesn’t permit 
summations with respect to m. In order to bypass this obstacle we make use of the relation 
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 ( )! ( 1)...( 1)
( k)!

m k m k m km x m m m k x x
m

− −= − − + ≡
−

 (3.14) 

where ( )m kx is the k-order derivative of mx and obtain  

( ) ( ) ( )( ) ( )

0 0 0

1 1( ) ( ) ( ) ( )
! !

m m
k k km m k m k m k

k k k

m
f D X X f D X f D X f D

k k k

∞
−

= = =

 ≡ ≡ ≡ 
 

    

where ( )m kX is obtained by replacing x with the operator X in the function ( )m kx . 
Finally we may conclude that  
“Let ( )f x be any differentiable function of the argument x, ( )g x any function expandable into Taylor series, 

( ) ( )kf x and ( ) ( )kg x respectively the k-order derivative with respect to x of ( )f x and ( )g x , then  

 ( ) ( )

0

1( ) ( ) ( ) ( )
!

k k

k
f D g X g X f D

k

∞

=
= ” (3.15) 

3.4 Invariance of the Fundamental Identity  
Inspecting the way we obtain the fundamental identity in differential calculus (3.15) we see that it is the 
consequence of one and only one condition which is that the ordered couple of operators ( , )D X respects the 
basic identity (3.1) 

 [ ] ˆ,D X I≡  

We thus obtain an extremely important corollary saying that the fundamental identity is invariant under replacing 
the couple of operators ( , )D X with any other couple ( , )A B respecting the condition [ ] ˆ,A B I≡ . 
From this corollary we get the twin identity of the fundamental one. Indeed by remarking that 

[ ] ˆ,X D XD DX I− ≡ − + ≡  

we get 

( )( )

0

1( ) ( ) ( ) ( )
!

kk

k
f X g D g D f X

k

∞

=

− ≡ −  

Putting ( ) ( )h x f x= − , we have '( ) '( )h x f x= − − and 

( )( )

0

( )( ) ( ) ( ) ( )
!

k
kk

k
h X g D g D h X

k

∞

=

−≡  

i.e., because ( )h x is also arbitrary as is ( )f x  

 ( )( )

0

( )( ) ( ) ( ) ( )
!

k
kk

k
f X g D g D f X

k

∞

=

−≡      QED (3.16) 

By replacing ( , )D X with ( , )a a a aα β γ δ+ ++ +  where 1αδ βγ− =  or with 1 ˆ( , ( ))
'( ) xD u X

u x
 in (3.16) we obtain 

an infinity of identities for differential calculus.  
With the replacement by ˆ ˆ( ( ), )xD u X X+ we get for example 

( ) ( )

0

1ˆ ˆ ˆ ˆ ˆ( ( )) ( ) ( ) ( ( )) ( )
!

k k

k
f D u X g X g X f D u X g X

k

∞

=

+ = +  

By the way we see that the Newton binomial may be put under the forms 

 
( )m

0 0

1( )
k!

k
m m

k m k k m

k k

m
x a a x a x

k
−

= =

 
+ = = 

 
   

 
0

1
k!

x

m
aDk k m m

x
k

a D x e x
=

= =  (3.17) 
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3.5 The Fundamental Identity in Quantum Mechanics 
Consider the couple of operators 

 1 ˆ( )
2 xa D X+≡ −  (3.18a) 

 1 ˆ( )
2 xa D X≡ +  (3.18b) 

which are the creation and annihilation operators in quantum mechanics. 
Because  

 1 ˆ ˆ ˆ, ( , , )
2 x xa a D X X D I+      ≡ − ≡       

we get according to the invariance property of the identity (3.15) 

 ( )( )

0

1( ) ( ) ( ) ( )
!

kk

k
f a g a g a f a

k

∞
+ +

=
≡  (3.19) 

 ( )( )

0

1( ) ( ) ( ) ( ) ( )
!

kk k

k
f a g a g a f a

k

∞
+ +

=
≡ −  (3.20) 

and similar identities corresponding to the replacements of ( , )a a+ with couples ( , )a a a aα β γ δ+ ++ + where
1αδ βγ− = .  

4. Applications  
4.1 Calculation of primitives and derivatives 

 (i) Derivative of a product of two functions 
Apply the fundamental identity on a function ( )h x we find again the formula 

 ( )( )

0

1( ) ( ) ( ) ( ) ( ) ( )
!

kk
x x

k
f D g x h x g x f D h x

k

∞

=

=  (4.1) 

that Forsyth (1888) had found by generalizing the Leibnitz formula but did not give details of calculation. 
An example is 

4 4 2 3 41 1 1 1sin (sin )4! (cos )24 ( sin )12 ( cos )4 (sin )
1! 2! 3! 4!xD x x x x x x x x x x x= + + − + − +  

(ii) Change the primitive of ( )nuv into that of ( )nvu  

With 1( )x xf D D −≡ ≡  we get from (3.15) 

( ) 1 1 1 ( )( ' ... ( ) )n n n n n n
x x x x xuv D uD v D D u nD u u v− − −= = − + + −  

 1 2 1 ( )' ... ( ) ( )n n n n n
x xD uv nD u v nuv u v− − −= − + + − + −   (4.2) 

(iii) n-order primitive of a function  

Utilizing the formula 

 ' ' ,uv uv u v v= − ∀   

and putting 'v v=  we get the formula 

 ' ' ' ',uv u v u v v= − ∀     

which leads to the identity 
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 'u u u≡ −      (4.3) 

Applying the operator  onto both members of (4.3) and reutilizing (4.3) we get 

 ( ' ) 'u u u u≡ − −        (4.4) 

Defining 

 
n n

xD −≡  (4.5) 

we may write 

 
2 2 1 2 2 1

' 'u u u u≡ − −       

By recursion we obtain the identity 

 
1 2 1 1

' ' ... '
n n n n n
u u u u u

−
≡ − − − −         (4.6) 

Applying this identity onto a function ( )P x we get the formula  

 
1

1
( ) ( ) ' ( ) 0

nn n k n k n

k
uP x u P x u P x

− +

=
= − +      (4.7) 

 ( )iv Primitive of functions containing lnx 

Putting lnu x= in (4.6) we get 

 
11

1

ˆ ˆ ˆln ln
nn n k n k

k
X X X

− +−

=

≡ −     

and 

 
1

1

1ln ( ) ln ( ) ( ) 0
nn n k n k n

k
xP x x P x P x

x
− +

=

= − +      (4.8) 

With ( ) 1P x = we have the formula  

 1 1
1 1ln (ln (1 ... )) ( ) ( ) ln

! 2

nn

n n
xx x q x r x x
n n − −= − + + + + +  (4.9) 

allowing the calculation of the n-order primitive of ln x and from that of ( ) mx a −+ , ( )m
nP x− , 2(ln )x , etc.... 

For examples 

o 
2

2
1 1

3ln ln ( ) ( ) ln
2 4
xx x x q x r x x= − + +  

o 
2 2

0 0
1ln ln ln ln

2 4
x xx x x x x x q r x

x
= − = − + +      

o 1 1
1 1ln ln ln ln ln ln ( ) ( ) lnx x x x x x q x r x x
x x

= − − + +       

                  2 2 2 2
1 1

1 3 7ln ln ( ) ( ) ln
2 2 4

x x x x x q x r x x= − + + +  

4.2 Resolution of differential equations with constant coefficients 

 (i) Equation ( ) 0k
xD yα− =   

From the fundamental identity we get for all j<k 
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1 1 !ˆ ˆ ˆ( ) ( ) ( ) ... ( )
1! ( )!

k j j k j k k j
x x x x

jk kD X X D X D D
k j

α α α α− − −− ≡ − + − + + −
−

 

so that 

( ) 0k j x
xD x e j kαα− = ∀ <  

and that the solution of the differential equation  

 ( ) 0k
x kD yα− =  (4.10) 

is 

 1 1( ) ( ), ( 1)x
k k ky Q x e Q x polynomial order kα

− −= ∀ −  (4.11) 

For generalization consider the equation with constant coefficients  

 ( ) ( 1)
1 1... ' 0n n

n na y a y a y y−
−+ + + + =  (4.12) 

which may be written under the form 

 1
1 1 0( ) ( ... )n n

n x n x n x xP D y a D a D a D a y−
−= + + + +  

 1 2
1 2( ) ( ) .....( ) 0mkk k

n x x x ma D D D yα α α= − − − =  

where jα denotes the root with multiplicity jk of the characteristic polynomial ( )nP x . 
Because the operators ( ) jk

x jD α− commute one another, according to (4.11) the solution of ( ) 0n xP D y =  is 

 1 1
1

( ) , ( )j

j j

m
x

k k
j

y Q x e Q xα
− −

=
= ∀  (4.13) 

(ii) Equations with eigenfunction in second member 

 ( ) ( )mA y V xλ− = where ( ) ( )AV x V xλ=  (4.14) 

Consider an arbitrary function ( )f x . By the fundamental identity (3.15) we have 

    ( ) ( ) ( )1 !ˆ ˆ ˆ( ) ( ) ... ( ) ( ( )) ... ( ( ))
! !

m m m m m k m k m m
x x x x

mf D X X f D X f D f D
k m

≡ + + + +  

Searching for a term which doesn’t contain f ( )xD in this identity, we see that all the derivatives of order k=1, 

2,…, m-1 of  f ( )m x contain f ( )x and in ( ) (f ( ))m mx only the term !( '( ))mm f x  doesn’t contain  f ( )x .   

By these remarks we see that when applying both members of  the previous identity on a function V( )x
verifying the property ( ) ( ) 0xf D V x = we have 

 ( ) ( ) !( '( )) ( )m m m
x xf D x V x m f D V x=   

Applying the above remark for ˆ( )mA Iλ− where ˆ( ) ( ) 0A I V xλ− = we get the important formula  

 ( ) ( ) !( ') ( )m m mA x V x m A V xλ− =  (4.15) 

and by applying ˆ( )kA Iλ− on both sides 

( ) ( ) 0 0m k mA x V x kλ +− = ∀ >     

These formulae lead to the proposition  
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« The differential equation 

 ( ) ( )mA y V xλ− =  (4.16a) 

where 
 ( ) ( )AV x V xλ=  
has as general solution 

 1
1

1 ( ) ( ... ) ( )
!( '( ))

m m
m im

x

y x V x c x c V x c
m A D

−= + + + ∀ » (4.16b) 

In the case where 

 !( '( )) ( ) ( )m
x mm A D V x V xα=  (4.17) 

the solution is according to (4.15) 

 1 ( )m

m

y x V x
α

=  (4.18) 

Generalizing for the equation 

 
1

( ) ( )
n

m
i i

i
A I y a V xλ

=

− = where ( ) ( )i iAV x V xλ=  (4.19a) 

we see that if we can find a funtion
1

( )
n

i i
i

V xα
=
 so that 

 
1 1

!( ') ( ) ( )
n n

m
i i i i

i i
m A V x a V xα

= =

=   

then from (4.15) 

 
1 1 1

( ) ( ) !( ') ( ) ( )
n n n

m m m
i i i i i i

i i i
A I x V x m A V x a V xλ α α

= = =
− = =     

we get the solution  

 
1

( )
n

m
p i i

i
y x V xα

=

=   (4.19b) 

By the way we would like to highlight the formula    

 1 1( ) ( )
( ) !( ')

m
m mV x x V x

A I m Aλ
=

−
 (4.20) 

which is to be add to the well known formula of Cayley concerning the eigenfunction and eigenvalue of an 
operator 

o ( ) ( ) ( ) ( )f A V x f V xλ=  
where ( )f x is expandable in Taylor series. 

 (iii) Differential equations ( ) x
n xP D y eω=   

From the hereabove proposition we see that the differential equation  

 ( )m x
xD y eωω− =  (4.21a) 

corresponds to ( ) ( )x xA D D ω≡ − and ˆ'( )xA D I≡ so that the solution is 

 1
1

1 ( ... )
!

m x m x
m iy x e c x c e c

m
ω ω−= + + + ∀  (4.21b) 

Generalizing for the equation 



www.ccsenet.org/apr Applied Physics Research Vol. 8, No. 1; 2016 

170 

 ( ) ( )( )m x
n x x xP D y Q D D y eωω= − =  (4.22a) 

where ω is the root of multiplicity 0m ≥ of the characteristic polynomial we see that 

 ( )( ) ( ) !(1) ( ) !m m x m x x
x x xQ D D x e Q D m e Q m eϖ ω ωω ω− = =  

The general solution is then 

 1
1

1 ( ... )
! ( )

m x m x
m iy x e c x c e c

m Q
ω ω

ω
−= + + + ∀  (4.22b) 

(iv) Differential equations with sinusoidal functions at second member 
 ( ) cos sinn xP D y a x b xω ω= +  (4.23) 
If ( )n xP D has iω as root of multiplicity 0m ≥ and ( )iω−  as root of multiplicity n m≥ or vice versa we may 
write 

2 2( ) ( )( )m
n x x xP D Q D D ω≡ +     

Because  

2 2( ) ( os x sin x) 0 ,m
xD cω α ω β ω α β+ + = ∀    

we have according to (4.15) with 2 2( ) ( )x xA D D ω≡ + , '( ) 2x xA D D≡  

2 2 ˆ( ) ( cos sin ) !(2 ) ( cos sin )m m m
x xD X x x m D x xω α ω β ω α ω β ω+ + = +  

ˆ( ) ( cos sin ) ( ) !(2 ) ( cos sin )m m
n x x xP D X x x Q D m D x xα ω β ω α ω β ω+ = +  

Choosing ,α β so that 

 ( ) !(2 ) ( cos sin ) ( cos sin )m
x xQ D m D x x a x b xα ω β ω ω ω+ = +  (4.24) 

which is a very easy problem because  

2 2( os sin ) ( ) ( os sin )n n n
xD c x x c x xα ω β ω ω α ω β ω+ = − +   

we have the proposition  
« The general solution of the equation  

 2 2( ) ( )( ) ( cos sin )m
n x x xP D y Q D D y a x b xω ω ω= + = +  (4.25a) 

is 

 1
1( ) ( ... )( cos sin )m m

m iy x x c x c x x cα ω β ω−= + + + + ∀  (4.25b) 

where ( cos sin )x xα ω β ω+ is given by the equation 

( ) !(2 ) ( cos sin ) ( cos sin )m
x xQ D m D x x a x b xα ω β ω ω ω+ = + ”    

The above equation for finding the trial solution ( cos sin )x xα ω β ω+ is certainly  
far easier to perform than the trial equation 

 ( ) ( cos sin ) ( cos sin )m
n xP D x x x a x b xα ω β ω ω ω+ = +  

teached in nowadays textbooks.  
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For example consider the equation 

 7 4 2 3( ) ( 1)( 4) cos 2 3sin 2n x x x xP D y D D D y x x= + + + = +  

We search ,α β by identification of coefficients of cos 2x and sin 2x in 

 7 4 3( 1)3!(2 ) ( cos 2 sin 2 ) cos 2 3sin 2x x xD D D x x x xα β+ + + = +  

The details of calculation are 

 10 7 3( )48( cos 2 sin 2 ) cos 2 3sin 2x x xD D D x x x xα β+ + + = +   

 5 3 1(( 4) ( 4) ( 4) )48( cos 2 sin 2 ) cos 2 3sin 2x xD D x x x xα β− + − + − + = +  

 1( 1024 68 )( cos 2 sin 2 ) (cos 2 3sin 2 )
48xD x x x xα β− − + = +  

 1 3256 34 , 256 34
192 192

α β β α− − = − + =  

Once ,α β calculated, the particular solution is 

 3( ) ( cos 2 sin 2 )py x x x xα β= +  

(v) Differential equations with polynomials at second member 
 ( ) ( )n x mP D y T x=  (4.26) 
Consider the equation 

1 0 0( ) ( ... ) ( ), 0n
n x n x x mP D y a D a D a y T x a= + + + = ≠   

Applying 1m
xD +  on both sides we have 

1 1( ) ( ) 0m m
n x x x mP D D y D T x+ += =  

and see that 1 0m
xD y+ =  i.e. y must be a polynomial of order m.   

Now, let us introduce a polynomial ( )m xQ D such that 

 1 2
1 2( ) ( ) 1 0 ... 0 .....m m

m x n x m x m xQ D P D r D r D+ +
+ +≡ + + + + + +  (4.27) 

we obtain immediately a particular solution py of the equation because 

( ) ( ) ( ) ( )m x n x p p m x mQ D P D y y Q D T x= =    

To resume we may assert that 
“The particular solution of the differential equation 

 1 0 0( ) ( ... ) ( ), 0n
n x n x x mP D y a D a D a y T x a= + + + = ≠  (4.28a) 

is 

 ( ) ( )p m x my Q D T x=  (4.28b) 

where the coefficients iq of the polynomial ( )m xQ D verify the system of algebraic equations  
 0 0 1q a =  
 0 1 1 0... 0, 1,2,...,i i iq a q a q a i m−+ + + = = ” (4.29) 
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For example for 

4 3 2( ) ( 5 2 4 1) ( )n mP D y D D D D y T x= + − + + =    

we have 

0 0.1 1 1q q=  =  

0 1 14 0 4q q q+ =  = −  

0 1 2 22 4 0 18q q q q− + + =  =  

0 1 2 3 35 2 4 0 85q q q q q− + + =  = −  

0 1 2 3 4 45 2 4 0 395q q q q q q+ − + + =  =    
so that 

2 3 4(1 4 18 85 395 ) ( )p my D D D D T x= − + − +    

The present method for obtaining 

( ) ( )p m x my Q D T x=  

is convenient because ( )m xQ D is easy to get and doesn’t depend on the second member ( )mT x . 

(vi) Equations utilizing Heaviside function and Dirac delta function 

 2 2( ) b xD a y e− =  (4.30) 

Utilizing the function Dirac delta function ( )xδ having the special property ( ) 0x xδ = and the Heaviside step 
function ( ) 0H x = for 0x < , ( ) 1H x = for 0x > , we have 
 sgn( ) ( ) ( )x H x H x= − − , '( ) ( )H x xδ= , sgn'( ) 2 ( )x xδ=  

 sgn( ) (sgn( ) 2 ( )) a sgnxa x a x a xax x
xD e e a x x x e eδ= = + =   

From these formulae we get 

2 2( ) 2 ( ) 2 ( )a x a x
xD a e a x e a xδ δ− = =  

ˆ ˆ ˆ2 2 2 2 2 2 2 2( ) ( ) ) 2 ( ) ( )b X b X b X
x xD a e D b a b e b x b a eδ− = − − + = + −  

Combining these two formulae so that ( )xδ disappears we may conclude that  
“The general solution of the equation 

2 2( ) ,b xD a y e a b− = ≠  

is 

2 2 1
2 2

1 ( ) ( ) 0
( )

a x b xy be ae D a
a a b

−= − + −
−

 

or 

 1 2 1 22 2
1 cosh sinh ,

( )
b x

p
x

y e y c ax c ax c c
D a

= = + + ∀
−

” (4.31) 

From the above result we may resolve the equations 

 2( ) b x
n xP D y e=  (4.32) 

and, remarking that ( ) ( )n x n xQ D Q D− is a function of 2
xD , some of the equations of the form ( ) b x

n xQ D y e= .  
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 (vii) Equations with arbitrary second member 

( ) ( )m
xD a y f x− =      (4.33) 

From the fundamental identity we may factorize the sum ˆ( )xD aI−   

ˆax ax
x xe D e D aI− ≡ −  

and get its inverse 

1ˆ( ) ax ax
xD aI e e− −− ≡     (4.35) 

More generally 

ˆ( )
mm ax ax

xD aI e e− −− ≡   

The above identity allows us to conclude that  
“The solution of the equation 

 ( ) ( )m
xD a y f x− =  

is 

( ) ( ( ) 0)
max m ax ax ax

xy e D e f x e e f x− − −= = + ”  (4.36) 

Generalizing to equations 

1 1 1( ) ( )( ).....( ) ( )n n n n i iP D y a D D D y f xα α α α α− += − − − = ≤  (4.37a) 
we have the solution 

1 2 1 1( ) ( )... ( )n n nx x x xy e e e e f x dxα α α α α α−− + − + −=         (4.37b) 

4.3 Resolution of differential equations of 1st order 
Consider the equation 
 ' ( ) ( ( )) ( )xy a x y D a x y f x+ = + =  (4.38) 
By the fundamental identity (3.15) we have 

 ˆ ˆ ˆ( ) ( ) ( )ˆ'( )A X A X A X
x xD e e D A X e≡ +  

so that 

 ˆ ˆ( ) ( )ˆ'( ) A X A X
x xD A X e D e−+ ≡  (4.39) 

Acccording to the above formula we see that 
“The solution of the equation  

' ( ) ( ( )) ( )xy a x y D a x y f x+ = + =  

is, with ( ) ( )A x a x=  , 

 ( ) ( ) ( )( ) 0A x A x A xy e e f x e− −= +  ” (4.40) 

4.4 Solution of Second Order Differential Equations  
Consider the equation 
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 ( ( ))( ( )) ( )x xD a x D b x y f x+ + =   (4.41) 
From (4.40) we may write this equation under the form 

( ) ( ) ( ) ( ) ( )A x A x B x B x
x xe D e D e y f x− − =     

where  A( )x and  B( )x are respectively primitive of a( )x and b( )x . 
As consequence we get the proposition 
“The general solution of the equation 
 ( ( ))( ( )) ( )x xD a x D b x y f x+ + =  
or 

 2( ( ) ') ( )x xD a b D ab b y f x+ + + + =  

is  

 ( ) ( ) ( ) ( ) ( ( ) 0)B x B x A x A xy e e e f x− −= +  ” (4.42) 

For example, the solution of the equation 
( )( )D tgx D tgx y tgx− + =  

is 

2 2

1 coscos cos cos
cos 1 sin

xy x x tgx x
x x

= = −
−    

1 1 sin 1 sincos ln cos ln
2 1 sin cosp

x xy x x
x x

+ += − = −
−

   

4.5 Resolution of Differential Equations by Differential Transformation  

 (i) Consider the equation  

 ˆ( , ) ( )xP D X y f x=  (4.43) 

Applying on both sides by an operator ( )xA D or ˆ( )A X and utilizing the identities deduced from the fundamental 
one 

 ( ) ( ) ( )
ˆ

1ˆ ˆ( ) ( , ) ... ... , ( , )
!

k k k k
x x X X xXA D P D X PA P A P P X D

k
≡ + + + ≡ ∂  (4.44) 

 ( ) ( ) ( )1ˆ ˆ ˆ( ) ( , ) ... ... , ( , )
! x

k k k k
x D D D xA X P D X PA P A P P X D

k
≡ + + + ≡ ∂  (4.45) 

we get the transformed equation 

 ˆ( , ) ( )xAP D X y Af x=  (4.46) 

which may be resolved if the parameters in  A are well choosen.   
As examples we have 

 
2 2ˆ ˆˆ ˆ ˆ( , ) ( 2 , )aX aX

x xe P D X P D aX X e≡ −  

 
2 2ˆ ˆ( , ) ( , 2 )x xaD aD

x x xe P D X P D X aD e≡ +  
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  (ii) Transform of equation  

 ˆ( , ) ( )ax
n xP D X y e f x=  (4.47) 

Applying ˆaXe− on both sides we transform the equation 

ˆ( , ) ( )ax
n xP D X y e f x=  

into 

ˆ ˆ( , ) ( , ) ( )ax ax
n x n xe P D X y P D a X e y f x− −= + =   (4.48) 

which is an equation for calculating axY e y−= . 
The above method may be applied for other forms of second member.  
4.6 Differential calculus for studying Special functions 

 (i) The Hermite polynomials  

Consider the differential equation 

 2( 2 2 ) 0x xD xD n y− + =  (4.49) 

Let  A be an operator depending only on xD we get according to (3.15) 

 2 2 1ˆ( 2 2 ) ( 2( ' ) 2 ) 0x x x xA D xD n y D X A A D n Ay−− + = − + + =  

In order to cancel terms in 2
xD we make the choice 12 ' xA A D− ≡ i.e. 

  
21

4' 1
2

xD

x
A D A e
A

≡  ≡  

and get the first order equation  

 
2 21 1

24 4ˆ( 2 2 ) 2( ) 0x xD D

x x xe D XD n y xD n e y− + = − − =  (4.50) 

which, because ( ) 0n
xxD n x− = , has as solution 

 
21

4 xD n
n ny c e x

−
=  (4.51) 

with 

 2 2
2 2 22

1 (2 1)!!(0) ( ) ( )
!2 2

n n n n
n n x nn n

ny c D x c
n

−= − = −  (4.52) 

The Hermite polynomial ( )nH x is a solution having the property 

  2 2 1(0) ( ) 2 (2 1)!!, (0) 0n n
n nH n H += − − =   

so that 

 
21

4( ) (2 )xD n
nH x e x

−
=  (4.53) 

 
Because according to the fundamental identity (3.15) 

 
2 2

2 2
1 1

ˆ ˆ4 4ˆ ˆ2 (2 )x xD D X X
x xX D e X e e D e

− − −− ≡ ≡ −  

we get the Rodrigues formula  
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o 
2 2 2

2 2
1 1 1
4 4 4( ) (2 ) (2 ) 1 ( )x x xD D Dn n n x n x

n xH x e x e x e e D e
− − −= = = −  

The generating functions and the main properties of Hermite polynomials may be obtained in a concise manner 
as we can see hereafter. 

o 
2

22 24

0
( )

!

xDnn
tx t tx

n
n

tH x e e e
n

− − +

−

= =  

o  
22 2

2 24 4 44 4 4

0
( ) ( )

!

yx xDD Dnn
xyt x t xyt

n n
n

tH x H y e e e e e
n

− − − − +

−

= =  

22
22 2 2

2
(2 )14 ( ) 22 1 44 2(1 4 )

x xt yD y yt x y
t te e t e

−−− − +− −
−= = −   

For proving the above formula we base on the followed remark and calculations 

2
( 2 ) 0x

xD x eαα− =  

2 22 2ˆ ˆ( 2 ) ( 2 4 ) 0x xD Dx x
x x xe D X e D X D e eβ βα αα α αβ− = − − =  

to get  

 
2 2 2 / (1 4 )xD x xe e ceβ α α αβ−=  (4.54) 

and after egalization of the constants in both sides  

 
1
2

0

(2 )! (1 4 )
! !

n n

n

n c
n n

α β αβ
∞ −

=

= − =  (4.55) 

The addition formula for calculating ( )nH x y+ may be proved by utilizing the differential representation and 
the remarks that 

 
2

2
1

4( ) (2 )
xD

n
nH x e xαα α

−
=  

 ( ) ( )x yD f x y D f x y+ = +   

 ( ) ( )n k n k
x x yD f x y D D f x y k n−+ = + ∀ ≤   (4.56) 

which lead to for example for 2, / 2k nα = =  

o 2

0
( ) 2 ( 2 ) ( 2 )

n n

n k n k
k

n
H x y H x H y

k
−

−
=

 
+ =  

 
  

By the same manner we may obtain similar formulae for ( ... )nH x y t+ + + .  
The Hermite polynomials are related to the creation and annihilation operators in quantum mechanics 

 1 ˆ( )
2 xa D X+ ≡ − , 1 ˆ( )

2 xa D X≡ +  

Indeed from (4.53) we get the familiar formula 

o 
21

14
1 1( ) (2 ) 2 ( ) 2 ( )xD n

n n nH x e x xH x nH x
− +

+ −= = −    

which allows us to write 
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1 1

ˆ ˆ ˆ ˆ
( ) 2 ( ) 2 ( )

2 2 2 2
x x x x

n n n
X D X D X D X DH H nH+ −

+ + + +
≡ −  

and deduce by recursion the remarkable identity 

o 
0

ˆ( )
n

k n k
n x

k

n
H a X D

k
−

=

 
≡  

 
  

Derivations and m-terms recurrence relations of Hermite polynomials are easily obtained by remarking that from 
the fundamental identities (3.15), (3.16) 

 
2 21 1

4 4x xD Dm m
x xD e e D

− −
≡  

 
2 2 2 21 1 1 1

1 ( ) ( )4 4 4 41ˆ ˆ ˆ ˆ... ( )
2 !

x x x xD D D Dm m k m m mxDX e e X e kX e X
m

− − − −−≡ + + +  

As simple example we have 

o 
21

14
1( ) 2 (2 ) 2 ( )xD n

x n nD H x ne x nH x
− −

−= =  

o 
2 21 1

4 4
1

ˆ ˆ2 ( ) 2 (2 ) (2 )(2 ) ( ) ' ( )x xD Dn n
n x n nxH x Xe x e X D x H x H x

− −

+= = + = +  

2 2 2 2

1( ) 2 ( ) ' ( ) ( )x x x x
n n n ne H x e xH x e H x e H x− − − −

+ = − = −    

o 
2

10
( ) (0)x

n ne H x H
∞ −

+ =  

o 
2 1

1( ) (0) ( ) (0) 0 0x n
n n ne H x H H n

∞ − +
+−∞

= + − = ≥  

o 
2

0 ( )xe H x π
∞ −

−∞
=  

o 
2 2 2

1 1( ) ( ) 2 ( ) ( ) ' ( ) ( )x x x
n m n m n me H x H x e xH x H x e H x H x− − −

− −= −    
2 2

1 1( ) ( ) ( ) ' ( )x x
n m n me H x H x e H x H x− −

− −= − +   

2 2 ( )
1 2( ( ) ( ) ( ) ' ( ) ...) ( ) ( )x x m

n m n m n m me H x H x H x H x e H x H x− −
− − −= − + + +   

Examining all possibilities for n m≥ concerning parity and remarking that 
2

00

1
( )

2
x

n ne H x πδ
∞ − =  we get the 

orthogality of the Hermite polynomials 

o 
2

( ) ( ) !2x m
n m nme H x H x m πδ

∞ −

−∞
=  

From the recurrence and derivative formulae we may prove by recursion the following identities 

o 
0

ˆ ˆ( 2 ) ( )
n

n k
x x n k

k

n
D X D H X

k −
=

 
+ ≡  

 
  

o 
0

ˆ ˆ( 2 ) ( ) ( )
n

n k n k
x k x

k

n
D X H X D

k
−

=

 
− ≡ −  

 
  

Replacing ˆ( , )xD X with 1 ˆ( 2 , )
2xD X and utilizing the Hermite polynomials ( )nHe x defined by 

 
21

4 2( ) 2 ( )
2

x
nD n

n n
xHe x e x H

− −
= =  (4.57) 

we get 
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o ( )

0 0

1ˆ ˆ ˆ( ) ( ) ( ) ( )
!

n n
n k n k

x x n k x k
k k

n
D X D He X D He X

k k−
= =

 
+ ≡ ≡ 

 
   

o  ( )

0

1ˆ ˆ( ) ( ) ( )( )
!

n
n k n k

x k x
k

D X He X D
k=

− ≡ −  

From the above identities we obtain also two identities 

o  ( )

0

1 ˆ( ) ( ) ( )
! 2

k x
k

k

D
f a f He X

k

∞
+

=

≡  

o  
1

( ) 2

0

1 ˆ( ) ( ) ( ) (2 )
!

k k
k x

k
f a He X f D

k

∞ −

=

≡ −  

where f(x) is expandable in Taylor series. 
These identities may be generalized for multi- dimensional spaces and allow the calculations of ( ) ( )f a g x+  by 

( ) ( )f a g x . 

            (ii)  The Laguerre polynomials 

Consider the differential equation of Laguerre polynomials 

 2ˆ ˆ ˆ( (1 ) ) ( ( 1) ) 0x x x x xXD X D n y XD D D n y+ − + = − + + =  (4.58) 

Applying an operator ( )xA D onto both sides and utilizing the fundamental identity (3.15) we have 

 ˆ ˆ 'AX XA A≡ +  

 ˆ ˆ( ( 1) ) ( ( 1) ) ' ( 1)x x x x x x x xA XD D D n XD D D n A A D D− + + ≡ − + + + −  

Searching for ( )xA D such that ' ( 1)x xA D D − contains A we have two choices 

 m
xA D −≡ and ( 1) m

xA D −≡ −  

With the second choice we may transform the Laguerre equation into 

 ˆ( 1) ( ( 1) )m
x x x xD XD D D n y−− − + +           

              ˆ(( ( 1) ) )x x x xXD D D n mD A= − + + −  

              ˆ ˆ(( 1) ( ))( 1) 0m
x x x xXD m D XD n D y−= − + − − − =  

Remarking that 

 ˆ ˆ( ) ( 1) 0n n
x x xXD n x XD n D x− = − + =  (4.59) 

we choice m n= and see that  

 ( 1) n n
x nD y c x−− =  (4.60) 

For conclusion, we may state that  
“The differential equation 2ˆ ˆ( (1 ) 2 ) 0

x x
XD X D n y+ − + =  

has as particular solution 

 ( 1)n n
n n xy c D x= −  

If we define the Laguerre polynomial as a particular solution verifying the condition 
 (0) 1nL =  
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then 

 ( ) ( 1)
!

n
n

n x
xL x D
n

= −  (4.61) 

By factorizing ( 1)xD − we get the Rodrigues formula and vice versa 

o ( ) / !x n x n
n xL x e D e x n−=  

From (4.61) we get the formula for calculating explicitly ( )nL x  

o 
0

!( ) ( ) (1 ) ( )
! !( )! !

n nn
n n n k k

n x x
k

x n xL x D D
n k n k n

−

=

= − − = −
−  

0 0

!( ) ( )
!( )!( )! !

kn n
n k n k k

k k

nn xx
kk n k n k k

− −

= =

 
= − = −  − −  
   

o  ( ) ( ) ( ) ( 1) ( 1) ( )
!

n
k k k n k

n x n x x x n k
xL x D L x D D D L x
n −= = − = −  

Now, let us prove the orthogonality of Laguerre polynomials. 
Remarking that 

 1( 1)x x
xe e D− −≡ −  

and utilizing the fundamental identity (3.16) we get  

 1( ) ( ) ( 1) ( )( 1)
!

m
x x m

n m x n x
xe L x L x e D L x D
m

− − −= − −   

1 ( ) ( )

0

( )( 1) ( 1) ( )
! !

k mn
x m k k

x x n
k

xe D D L x
k m

− −

=

−= − −  

1

0

( ) !( 1) ( 1) ( 1) ( )
!( )! !

k mn
x m k k

x x x n k
k

m xe D D D L x
k m k m

− − −
−

=

−= − − −
−  

( )
( )

1

0 0

( ) !( 1) ( 1) ( ) ( 1) ( )
!( )! ! !

i
k m in k

x m k i k
x x x n k

k i

m xe D D D L x
k m k i m

− − −
−

= =

−= − − − −
−  

1

0 0

( ) ! ! !( 1) ( 1) ( )
!( )! ( )! !( )! !

k i m in k
x m i

x x n k
k i

m k m xe D D L x
k m k k i i m i m

+ −
− − −

−
= =

−= − −
− − −  

 
0

( ) ( )x
n me L x L x

∞ − 1
0

0 0

( ) ! ! ( 1) ( )
!( )! ( )! !( )!

k in k
m i m i

x n k x
k i

m k D x L x
k m k k i i m i

+
− − −

− =
= =

−= − −
− − −  

Examining all possibilities for k, i we see that only for n=m=i=k that we have a non vanishing term and may 
conclude that 

o  1 0
, ,0

( ) ( ) ( 1)x
n m x n m n me L x L x D x δ δ

∞ − −= − − =      QED 

Utilizing the notation for confluent hypergeometric function 

 0 1
1( ,1 , )

(1 ) !

n

n n

xF x
n

α
α

− + =
+  (4.62) 

we get from the previous formula the representation of Laguerre polynomials by an operator independent on the 
parameter 

 0 1
0

1( ) ( ) ( ,1, )
!

n kn
n k n

n x
k

n xx L F D x
kx k

−

=

 
= − = − − 

 
  (4.63) 

Under this form derivatives, recurrence relations, generating function for Laguerre polynomials are very simple 
to obtain. 
For the generating function we have  
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o 1
0 1 0 1

0 0

1( ) ( ,1, ) ( ,1, )(1 )n n n n
n x x

n n
x L t F D x t F D xt

x

∞ ∞
−

= =

= − − = − − −   

                              1 1(1 )
t
xtxt e

−− −= −  

Putting xt u= , 1 /x z=  we get  

o 1 1

0
( ) (1 )

uz
n u

n
n

L z u u e
∞ −− −

=

== −  

(ii) The Generalized Laguerre Polynomials 
Applying the operator (1 )

x
D α−− onto the Laguerre differential equation and remarking by the fundamental identity 

that 

 1ˆ ˆ(1 ) (1 ) (1 )x x xD X X D Dα α αα− − − −− ≡ − − −  

we get the differential equation of generalized Laguerre polynomials ( )nL xα  

 2ˆ ˆ( ( 1 ) )(1 ) 0x x xXD X D n D yαα −+ + − + − =  (4.64) 

and consequently 

 ( ) (1 ) ( ) ( ) (1 )
!

n
n n

n x n x
xL x D L x D
n

α α α+= − = − −  (4.65) 

With the notation ( ) ( 1)....( 1)na a a a n= + + − we have the explicit formulae 

0

(1 )( ) ( )
(1 ) ( )! !

kn
k n

n
k k

xL x
n k k

α α
α=

+
= −

+ −  

(0) (1 ) / !n nL nα α= +  

In particular 

o 
1 2 2 2

22
2 2

0

2 (2 )! ( )!( ) ( ) ( )
! ( )! !2 (2 2 )!

n n kn
n k

n k n
k

n n k xL x
n n k kn k

− −−

−
=

−= − −
−−  

            2 2 2 2
2 2

0 0

( ) 1 (2 )! ( ) ( ) 1( )
! (2 2 )! ! !!2 2

n n kn n
k n k k n

xk k
k k

n x D x
n n k n kk

−

= =

− − −= − =
−   

       
2

24
22

( ) ( ) ( )
! !2

xDn n
n

nne x H x
n n

−− −= =  

By similar calculation we get also 

o 1/2 2
2 12 1

( )( ) ( )
!2

n

n nnxL x H x
n ++

−=  

Utilizing the notation for confluent hypergeometric function we get the formula  

 0 1
1( ) (1 ) ( ,1 , )

!

n
n

n n x
xx L F D

x n
α α α= + − + −   (4.66) 

representing (1/ )n
nx L xα by a differential operator independent with respect to n. 

From (4.65) and thank to the identity deduced from the fundamental one (3.15) 

 ( )

0

(1 )ˆ ˆ(1 ) (1 )
(1 )

m
m n n k m kn

x x
k n k

X D D Xα αα
α

+ + −

= −

+
− ≡ −

+  

we get a recurrence relation between ( )m
nx L xα and the ( )m

n m kL xα −
+ − , for example 

o 1 1
1( ) ( 1) ( ) ( ) ( )n n nxL x n L x n L xα α αα− −

+= − + + +  
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As for derivatives we have 

o ( ) ( ) (1 ) ( ) ( )
( )!

n m
m n n m m

x n x n m
xD L x D L x

n m
α α α

−
+ +

−= − − = −
−

 

With the same remarks as for Hermite polynomials we get the addition formula 

o ( ) ( )( ) ( ) (1 ) ( ) (1 ) (1 )
! !

n n
n n n a n b

n x x y
x y x yL x y D D D

n n
α α+ ++ ++ = − − = − − −    

 
0

( ) ( )
n

a i b i
i n i

i
L x L y a b α− +

−
=

= + =  

The generating functions are obtained consicely by (4.66) 

o 0 1 0 1
0 0

1 1( ) ( ,1 , ) ( ,1 , )
(1 ) !

n n
n n xt

n x
n nn

x tx L t F D F t e
x n

α α α
α

∞ ∞

= =

= − + − = − + −
+   

o 0 1
0 0

1( ) ( ,1 , ) (1 )
!

n n
n n

n x n
n n

x tx L t F D
x n

α α α
∞ ∞

= =

= − + − +               

o 1
0 1

0

! 1( ) ( ,1 , )(1 )
(1 )

n n
n x

n n

n x L t F D xt
x

α α
α

∞
−

=

= − + − −
+  

1
1 1(1,1 , )(1 )

1
tF xt
xt

α −= + − −
−

 

Putting xt u= , 1 /x z=  we get generating functions of ( )nL xα  

o 1 1
0

1 ( ) ( ,1 , )
(1 )

n ut
n

n n

L z u F uz eα α
α

∞

=

= − + −
+  

o 1 1

0
( ) (1 )

uz
n u

n
n

L z u u eα α
∞ −− − −

=

= −  

o 1
1 1

0

! ( ) (1,1 , )(1 )
(1 ) 1

n
n

n n

n uzL z u F u
u

α α
α

∞
−

=

= + − −
+ −  

(iv)The Gegenbauer polynomials 
Defining the Gegenbauer polynomials by  

 
2

2

0

1( ) ( ) ( ) (2 )
!( 2 )!

n

m n m
n n m

m
C x x

m n m
λ λ

 
  

−
−

=

= −
−  (4.67) 

and remarking that the operator ˆ ˆ( )xX XD n− vanishes nx and transforms 2nx −  into 1( 2) nx −− we may prove that 

 
1

2
2 1 2 1

1
0

1( ) ( ) ( ) ( ) (2 )
!( 2 2)!

n

m n m
x n n m

m
nx x D C x x

m n m
λ λ

 −  
+ − −

− −
=

− = −
− −   

Besides we have 
2

2 1

0

2( 2 )( ) ( ) ( ) (2 )
!( 2 )!

n

m n m
x n n m

n mD C x x
m n m

λ λ

 
  

− −
−

−= −
−  

Combining these two formulae we get the recurrence relation 

 2
1((1 ) ) ( ) (2 1 ) ( )x n nx D nx C x n C xλ λλ −− + = − +  (4.68) 

By the fundamental identity (3.15) we may factorize 

 
12 2 22 2ˆ ˆ ˆ ˆ((1 ) ) (1 ) (1 )

n n

x xX D nX X D X
+ −

− + ≡ − −  

and get 
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12 22 2

1(1 ) (1 ) ( ) (2 1 ) ( )
n n

x n nx D x C x n C xλ λλ
+ −

−− − = − +  

By iteration we obtain the differential equation of the Gegenbauer polynomials 

 
3

2 22 2
0((1 ) ) (1 ) (2 )

n
n

x n nx D x y yλ
−

− − =  (4.69) 

Performing the change of argument 

1 3
2 22 2( ) (1 ) (1 )u xu x x x D x D

−
= −  = −  

 2 2 1 2 2 2 1(1 ) (1 ) ; (1 )u x x u u− −+ = − = +  (4.70) 

we may change the equation (4.69) into 

 2 2
0(1 ) (2 )

n
n

u n nD u y yλ+ =    

and get the solution 

 
3

2 22 2
0(2 ) (1 ) ((1 ) )

n
n

n n xy x x D yλ −= − −   (4.71) 

i.e. 

 2 22 2
0 0(2 ) (1 ) (2 ) (1 ) ( )

!

n n n
n

n n u n u
uy u D y y u F D
n

λ λ
− −−= + = +  (4.72) 

where  F( )x is an arbitrary function 0
0

( ) , 0k
k

k
F x F x F

∞

=
= ≠ . 

Utilizing the fundamental identity (3.15) we have 

 2 2 2 12 2
2(1 ) (1 ) (1 ) 2

2 (1 )

n n

u u u
n nuu D u D u u D

u
− −+ + = + + = +

+
 (4.73) 

so that the above equation may be written 

 2 2
0 02 2(2 ) ( )(1 ) (2 ) ( )

! !1 1

n n n

n n u n u
nu u nu xy y F D u y F D

n nu u
λ λ

−
= + + = +

+ +
 

Now from (4.73) and (4.70) we see that 

2 2 22 2 2
2( ) (1 ) (1 ) (1 )

! ! !1

n n nn n n
k k k

u u u
nu x x uD u D x u D

n n nu
− − −

+ = + − = +
+

 

2 2 22 2 2(1 ) (1 ) (1 )
( )! ( )!

n n n kn k n ku xu x x
n k n k

− +− −−
= + = − −

− −
 

2 22 2(1 ) (1 )
( )! !

k kn k n
k

x
x xx x D

n k n

−

= − = −
−

  (4.74) 

This is a remarkable formula where the acting operator in the left hand side depends on the parameter n although 
the one in the right doesn’t. 
Naming the operator in the right hand side by kB  

 2 2(1 )
k

k
k xB x D≡ −  (4.75) 

we get 

 2 2
0 0

0 0
(2 ) (1 ) (2 )

! !

k n nn n
k

n n k x n k k
k k

x xy y F x D y F B
n n

λ λ
= =

= − =   

and 
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 0(0) (2 )n n ny y Fλ=  
The Gegenbauer polynomials verify the initial condition 

 0 2 1 2
( )1, (0) 0, (0) ( )

!
n n

n ny C C
n

λ λ λ
+= = = −  

so that 

 2
2 2 1

2 2

(0) ( )( ) 0
(2 ) !(2 )

nn n
n n

n n

CF F
n

λ λ
λ λ += = − =  (4.76) 

i.e. 

 
2

2
1 1 0 1

1( ) ( ;2 ; ) ( ; ; )
2 4

xF x F x Fλ λ λ= − = − + −  (4.77) 

2
2 2

0 2

( )( ) (2 ) ( ) (1 )
!(2 ) !

n
n

k k kk
n n x

k k

xC x x D
k n

λ λλ
λ

 
  

=

= − −  

Finally we obtain the symbolic representation of Gegenbauer polynomials  

 
2

0 1
1( ) : (2 ) ( ; ; )
1/ 2 4 !

n

n n
B xC x F

n
λ λ

λ
= − −

+
 (4.78) 

where the undefined notation 2kB must be replaced with the well defined operator 2kB . 
The representation of Gegenbauer polynomials by a differential operator is easy to remember, convenient for 
searching differential recurrence relations.  

The generating function may also be calculated as followed where we put for simplicity 1 1

²
( ) ( ;2 ; )

4
B

F B F λ λ= −  

2

0 0

( )( ) : ( ) (2 ) : ( )(1 )
!

n
n

n n
n n

xtC x t F B F B xt
n

λ λλ
∞ ∞

−

= =

= = −   

2 2 2 2
2 2 2

0 0
(1 ) (1 ) (1 )k k

k k k
k k

F B xt F x D xtλ λ
∞ ∞

− −

= =

= − = − −   

2 2 2 2
2 2

0
(1 ) (2 ) (1 )k k k

k k
k

F x t xt λλ
∞

− −

=

= − −  

2 2
2

2
0

( ) (1 )(1 ) ( )
! (1 )

k k
k k

k
k

x txt
k xt

λ λ∞
−

=

−= − −
−         

 
2 2

2 2
2

(1 )(1 ) (1 ) (1 2 )
(1 )

x txt xt t
xt

λ λ λ− − −−= − + = + +
−

 (4.79) 

The Legendre polynomial ( )nP x is a particular case of Gegenbauer polynomials corresponding to 1/ 2λ = so that 

 
2

22
0 1

0 0

²( ) : ( ;1; ) ( ) ( 1)
4 4 ! ! 4 ! !

kn n
n k n k nk x

n
k k

B DBP x F x x x x
k k k k= =

= − − = − = −   (4.80) 

(v) The Chebyshev polynomials 
The Chebyshev polynomials of the first kind ( )nT x are related to the Gegenbauer polynomials by the relation 

 
2

0 10

1( ) lim ( ) : ! ( ; ; )
2 1/ 2 4 !

n

nn
n B xT x C x n F

n
λ

λ λ→
= = − −  (4.81) 

so that we get a very simple representation of them 

  ( ) : cos n
nT x B x=  (4.82) 

From this formula we may deduce some generating functions of ( )nT x  
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o 2 2 2

0 0

1( ) : cos ( ) (1 ) osht x 1
! (2 )!

n
tx k k k tx tx

n
n k

tT x B e x t e c e
n k

∞ ∞

= =

= = − − = −   

o 2 2
2

0 0

1 1 1 1( ) : cos ( 1)
1 (2 )! 1 1 2

n k k
n x

n k

xtT x t B x D
xt k xt xt t

∞ ∞

= =

−= = − =
− − − +   

o 2 2

1 0

1 1 1( ) : cos (ln 1) ( 1) ln
1 (2 )! 1

n
k k

n x
n k

tT x B x D
n xt k xt

∞ ∞

= =

= − = −
− −   

 2 2 2
2

1

1 1ln ( 1) (1 ) ln
1 1 2

k k k

k
x t xt

xt xt t

∞
−

=

= + − − =
− − +

  

and the important properties coming trom (4.82) 

o 
2 2

2 2 2 2

0 0

1( ) ( 1) ( 1)
2(2 )!

n n

k k n k n k
n x

k k

n
T x x D x x x

kk

   
      

−

= =

 
= − = − 

 
    

o 
2

2 2

0
( s ) ( sin ) cos Re( os isin ) cos

2

n

k n k n
n

k

n
T co i c n

k
θ θ θ θ θ θ

 
  

−

=

 
= = + = 

 
  

o 
2

2 2

0
( ( s )) ( sm ) ( sin ) cos

2

n

k n k
n m n

k

n
T T co T co i m m

k
θ θ θ θ

 
  

−

=

 
= =  

 
  

            cos ( s )nmnm T coθ θ= =  
o ( ( )) ( )n m nmT T x T x=  

Similarly the Chebyshev polynomials of the second kind ( )nU x are defined by  

 1 sin( ) ( ) : ( 1) n
n n

BU x C x n x
B

= = +   (4.83) 

From this formula we get 

 
2

2 2

0

!( ) ( 1) ( 1)
(2 1)!( 2 )!

n

k n k
n

k

nU x n x x
k n k

 
  

−

=

= + −
+ −  

o 
2

1 2 1 1 2 1

0

( ) ( 1)!( os ) (sin ) ( sin ) cos
(2 1)!( 1 2 1)!

n
k

k n k
n

k

nU c i
k n k

θ θ θ θ

 
  

− + + − −

=

− +=
+ + − −  

1 n 1 1sin Im(isin cos ) sin sin( 1)nθ θ θ θ θ− + −= + = +  

and some generating functions. 
Searching for relations between ( )nT x and ( )nU x we utilize the fundamental identity (3.15) to get 

 2 2 2 2 1 2ˆ ˆ ˆ ˆ(1 ) ((1 ) 2 (1 ) )k k k k k
x x x xD X D X D kX X D−− ≡ − − −  

 [ ] 2
2 2 2

ˆ, 2x k k xD B kXB D−≡ −  

 2 2 2
ˆ , 2k k xX B kB D−

  ≡ −   

 2
2 2 2

ˆ ˆ, ( 2 2 ) )x k k x xXD B kX k B D D−
  ≡ − −   

and find 
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o  
1
2 sinˆinB : (1 ) x

Bs X D
B

≡ −  

o   [ ]
1

2 2 2sinˆ ˆ ˆ, osB : : (1 ) sinx x x
BD c X D X X B D

B
−

≡ ≡ −  

o  
1

2 2sin ˆ ˆ ˆosB : : (1 ) sinx x x x
BD c D XD X B XD

B
−

≡ ≡ −   

o  
1

2 2 2sinˆ ˆ ˆ, osB : (1 ) : (1 ) sinx
BX c X D X B

B
  ≡ − ≡ −   

o  
1

2 2ˆ ˆ,sinB : (1 ) cosX X B  ≡ − −   

From these identities we obtain  

o 
1

1 2 12sin sin( ) : ( 1) (1 ) sinn n n
n x

B BU x n x D x x B x
B B

−+ += + = = −  

o 1 2( ) ( ) ( )x n n nD T x nT x nxU x− −− =  

o 
1

2 2
1

sin ˆ ˆ ˆ( ) : : (1 ) sin ( )x n x x x n
BD T x D XD X B XD nU x

B
−

−≡ ≡ − =  

o 2
1 1( ) ( ) (1 ) ( )n n nxT x T x x U x+ −− = −  

o 1( ) ( ) ( )n n nxU x U x T x− − = −  
4.7 The Laplace Transform 
From the definition of the Laplace transform 

 
0

( ) ( )xtF x e f t dt
∞ −

−
=   (4.84) 

we may write at least for entire functions defined in the interval 0− + ∞   

 
0

1( ) ( ) ( )xt
x xF x f D e dt f D

x
∞ −

−
= − = −  (4.85) 

From the above differential representation of the Laplace transform we get  

o 11( ) ( ) ( ) !n n n
xf x x F x D n x

x
− −=  = − =  

o 1 1( ) ( ) xaDaxf x e F x e
x x a

−=  = =
−

 

o 2 2

1( ) ( )i x x if x e F x
x i x

ω ω
ω ω

+=  = =
− +

 

The tranforms of cos xω and sin xω are deduced from the above formula. 
Utilizing the notation ( )Lf x to denote the Laplace transform of ( )f x we get 

o 1 1 1 1( ) ( ) ( ) ( ) ( ) , 0x u
xLf ax f aD f D Lf u Lf x au a

x au a a a
= − = − = = = >  

o 1( ) ( ) ( ) ( ) ( )n n n
x x xLx f x D f D D Lf x

x
= − − = −  

o 1 1 1 11( ) ( ) ( ) ( ) ( ) ( ) 0 ( )x x x x x
Lx f x D f D D Lf x D Lf t dt

x
∞− − − −= − − = − + − =   

The integral limits are choosen so that the function in the left member converges at infinity. 
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o 1 1( ) ( ) ( )ax ax
x xLf x a f D a e f D e

x x
−− = − − = −  

Now, by the fundamental identity we have 

 (1)ˆ ˆ( ) ( ) ( )x x xXf D f D X f D− ≡ − + −  

 (1) (1) (2)ˆ ˆ( ) ( ) ( )x x xXf D f D X f D− ≡ − + −  

 (...)   

 ( 1) ( 1) ( )ˆ ˆ( ) ( ) ( )n n n
x x xXf D f D X f D− −− ≡ − + −  

Combining these n formulae we get 

 
1

( 1) ( )

0

ˆ ˆ ˆ( ) ( ) ( )
n

n k n k n
x x x

k
X f D X f D X f D

−
− −

=
− ≡ − + −  (4.86) 

Applying this identity onto the function 1
x

 we obtain the famous formula 

o 
1

( ) ( 1)

0
( ) ( ) (0)

n
n n k n k

k
Lf x x Lf x x f

−
− −

=

= −  

Replace ( ), '( )f x f x with ( ), ( )f x f x and take n=1 we get the Laguerre transform of
0

( )
x

f t dt  

 0( ) ( ) ( ) xLf x xL f x f x == −   

o 
0

1 ( ) ( )
x

Lf x L f t dt
x

=   

Let ( )H x be the Heaviside function, ( ) 0 0; ( ) 1 0H x for x H x for x= < = > we have by factorizing ˆ( )xD aI+ into

ˆ ˆaX aX
xe D e−    

o ( ) ( ) ( ) ( ) ( )
ax

xt xt
x xa a

eLf x a H x a e f t a dt f D a e dt f D a
x

−∞ ∞− −− − = − = − − = − −    

o                 ( ) ( )
ax

ax ax ax
x

ee f D e e Lf x
x

−
− −= − =  

From the above formula we get  

 0
0 0 0 0 0 00 0

( ) ( ) ( ) ( ) ( )xxL f x g x x H x x dx f x e Lg x dx
∞ ∞ −− − =   

   ( ( ))( ( ))Lf x Lg x=  

o 0 0 00
( ) ( ) ( ( ))( ( ))

x
L f x g x x dx Lf x Lg x− =  

5. Remarks and Conclusions 
Theoretically speaking, this work contributes to the development of differential calculus by a definition of the 
inverse operator of an arbitrary operator, including the ones having nonvanishing kernel.  
The second contribution of this work consists in proposing an identity, qualified fundamental, which changes the  

operators ( ) ( )f A g B where ˆAB BA I− ≡ into a sum of operators ( ) ( )1
( ) ( )

!
k kg B f A

k
. Practical applications of such  

identities in many situations lead to a new approach for resolution of differential equations; for representing 
many special functions as the transforms of monomials by differential operators and obtaining afterward in a 
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very concise manner all main properties of these polynomials. At the end we propose an elegant differential form 
for the Laplace transform and prove very concisely thank to the fundamental identity most of its properties.  
The last but not least conclusion is that the matter in this work is relatively readable, self - consistent so that it is 
ready for teaching to students. 
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