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Abstract 
We suggest using sets of pseudo-orthogonal code with antenna arrays working in Full Matrix Capture (FMC) 
mode, to increase the rate of data acquisition. This allows the use of signals comprised of phase-manipulated 
Kasami sequences, specifically developed for CMDA technology. The use of the Maximum Entropy Method 
(MEM) for decoding signals in lieu of matched filtration allows us to reduce noise level and increase time 
resolution in reflectors’ image. Additionally, to reduce noise level by more than 6 dB we suggest the use of various 
Kasami sequences for each position of an antenna array. Numerical and model experiments demonstrate the 
efficacy of the proposed approach.  
Keywords: antenna arrays, FMC, C-SAFT, TFM, CDMA, Kasami codes, Maximim Entropy Method (MEM). 
1. Introduction 
Currently, antenna rays are widely used in ultrasonic flaw detectors to visualize the internal structure of the 
targeted object: such as – most commonly – the internal technology of phased arrays (PA) (Olympus NDT., 2007), 
and the technology used by digital focus antenna (DFA) (Voronkov et al., 2011; Bazulin, Vopilkin, & Tikhonov, 
2015). Bazulin (2013), which is dedicated to the comparison of PA and DFA, we conclude that DFA technology is 
more promising, therefore we consider it in more detail. In the first stage of DFA application echoes measured 
during the transmitting and receiving of all elements pair combinations within an antenna array (Kovalev et al., 
1990). Bazulin (2001) refers DFA as the double scanning and Chatillon, Fidahoussen, and Calmon (2009) as Full 
Matrix Capture (FMC). Signal acquisition when antenna are working in both the double scanning mode and when 
moving is referred to as the «triple scanning mode». Bolotina et al. (2012) refers to this method as «migration 
arrays». In the second stage, image reconstruction is undertaken with the use of the combined SAFT method 
(C-SAFT) (Kovalev et al., 1990), which can be modified to account for multi-path ultrasonic testing of object with 
uneven borders (Bazulin, 2015). This method is also called the Total Focusing Method (TFM) (Chatillon, 
Fidahoussen, & Calmon, 2009). The possibility of coherently processing echo signals by C-SAFT for various 
antenna array positions allows one to obtain high quality images of reflectors that distinguish DFA from PA 
(Bazulin, 2013). However, the lack of acquisition when conducting double scanning is a large amount of measured 
data. By increasing the number of antenna array elements eN  data size increases quadratically. This leads to a 
decrease in the acquisition rate, as the transmission of echoes from the measuring unit to the image processing 
computer can be time consuming. This can be critical for a number of applications. 
Another area where the reduction of acquisition rate is important is in medical diagnosis: to obtain high-quality 
images of moving internal organs. Arrays can consist of more than one hundred piezoelectric elements. With a PA 
comprised of 128 elements, with a pulse repetition frequency of 1 kHz and the beam focused at 300 angles (S-scan), 
obtaining an image takes approximately 0.3 seconds. This is comparable with the movement speed of internal 
organs and, as a result, obtaining high-quality images becomes difficult. Using echo acquisition in 
double-scanning mode reduces the time to 0.12 seconds, because the measurements are made in just 128 pulses 
(instead of 300 in PA mode) through a high-speed data transmission channel, but this still may not be sufficient for 
high-quality visualization of moving objects (Gutiérrez-Fernández, Jiménez, Martín-Arguedas, Ureña, & 
Hernández, 2013). Therefore, the tasks of increasing the speed and reducing the acquired data size are highly 
relevant for more efficient ultrasonic inspection. 
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2. Statement of the Problem 
Let antenna array consists of eN  elements with xδ  element dimension and xΔ  distance between the elements 
centers. The procedure for registering echoes when double scanning is determined by the size of the switch matrix 
C  with e eN N×  size. If 1nm =C , this means that the radiating element has number n  and receiving element has 
number m. Schematically, echoes are shown in Figure 1 at the left pane for four-element antenna array. 
The set of echoes measured by all elements of the antenna array at the single radiation act of one element it called 
the shot, which are color coded in Figure 1 for various elements. Set of echoes for all shots called the salvo. 
Since in this paper the acoustic aspect of the issue is minor, we therefore use the simplest model for the radiation 
and scattering of ultrasonic pulses. An antenna array consisting of eN

 elements, without the wedge is placed on 
the surface of the inspected object, ultrasonic pulses are propagated through a homogeneous isotropic medium, the 
sound velocity is c , the reflection comes from the point scatterers with a refection coefficient ( )pε r

 
and located 

at the points pN . 
The field received with element m when radiating element is number n  is written below 
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where nr  and mr  are vectors for radiating and receiving elements positions; ( )s t  – the system’s reaction at δ
-function impact. Figure 1 schematically shows four groups of echoes from one point scatterer for an array, consisting 
of four elements. For clarity, for each element is assigned a color that matches the color of the radiated pulses. If all 
elements of the switch matrix C  are «1», e eN N×  echoes will be measured with eN  shots. That is for the 
32-elements antenna array, radiating 32 times, one need receive and store 1 024 echoes. The easiest way to reduce the 
amount of measured data is to fill with «1» only the upper or lower triangle of the matrix, which reduces about half 
the total size of the measured echoes, but does not reduce the acquisition time. One can randomly remove more than 
half cells from the matrix, but this approach will lead to an increase in noise in the reconstructed image. 
Nonlinear methods of image reconstruction allow us to use about 10% of the full set of echoes (Bazulin, 2013), e.g. 
only 1 600 echoes for the 128 elements antenna array need to be measured, instead of 16 348 echoes. Such 
methods, however, are quite complex and require more time to reconstruct the image than when using the C-SAFT 
method. 
From the perspective of multi-channel communications theory, double scan mode is similar to a situation where 
subscribers take turns sending a message that is subsequently received by all subscribers. The serial nature of the 
radiation probe pulse allows to answer the question: «Who is the source of the message?». Such a communication 
mode, when each pair of transmitter-receivers has the entire spectrum width, or most of it according to the selected 
time interval, is called Time-Division Multiple Access (TDMA) (Bernard, 2001). If all subscribers could send 
their messages simultaneously, and when receiving could filter all the messages and understand «Who sent the 
message?» – then this would drastically improve acquisition rate and data size. 
To resolve this problem – when the channels have a common frequency band, but a different code modulation – 
Code Division Multiple Access (CDMA) technology has been developed (Bernard, 2001). For its implementation, 
each element of the antenna array must radiate its unique probe signal ( )ns t , while receiving echoes from all other 
elements in the antenna array. Schematically echo measurements in CDMA are shown in Figure 1 on the right. 
Measured echoes with (1) can be written as 
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To apply the method of C-SAFT echoes ( )mp t  need to be decoded before subscriber m  can select a ( )nmp t  
message from the sender number n. Figure 1 shows the decoding procedure as the passage of a beam of light 
through a wedge. 
Ideally, in the case of 128eN =  this approach makes it possible to make a single shot instead of 128 measurements, 
and therefore reduce the number of echoes for the salvo from 16 348 to 128. It is clear that for this faster 
acquisition increase the time involved in echo decoding. Consequently the system may no longer generate an 
image with a frequency greater than 10 Hz. However, for expert post-processing with the automated inspection 
systems such performance restriction does not matter. 
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A similar approach is used in the high-speed inspection of rails when an antenna array simultaneously emits 
several probing pulses to form multiple ultrasonic beam incident angles (Alaix, 2006). However, dedicated 
publications do not mention the type of signal, not a decoding method. 
Thus, the problem of increasing the acquisition rate may be formulated as: the need to find a set of signals ( )ns t  
and decoding method, to recover signals ( )nmp t  according to formula (2) from the measured echo signals ( )mp t  
and then reconstruct images by C-SAFT. 
 

 
Figure 1. The principle of increasing the echoes acquisition rate 

 
An important feature of the use of CDMA technology is that the simultaneous emission of all elements in the 
antenna array will result in the physical focus of the ultrasonic acoustic field along the axis of the wedge, which 
will reduce the size of the area in which one can restore the image of reflectors. One can reduce this effect with a 
defocused acoustic beam. For this purpose it is necessary to emit echoes with delays, rising to the edges of the 
antenna array, and take this into account in the subsequent calculation. 
For effective decoding correlation function ( )nmR τ  of encoding signals set ( )ns t  must have the following property 
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where , 1,2,... en m N= . A set of signals having the property (3) is called orthogonal. Several types of encoding 
signals sets have been developed, which are more or less close to the ideal set with properties (3) and are called 
«pseudoorthogonal». For the formation of the probing signals it was proposed (Gutiérrez-Fernández, Jiménez, 
Martín-Arguedas, Ureña, & Hernández, 2013) to use a phase-shift keyed with Kasami sequences (Kasami, 1966) 
signals with carrier frequency cf . Kasami sequences belong to a class of pseudo-random signals and are generated 
by a shift register with length d  and a feedback register of the same length. The number of codes in the Kasami 
set is /22d

kN =  and the length of the code is 2 1d
cN = − , where d  is an even number. That is, for a given value of 

the shift register and the feedback register is possible to generate one set of kN  pseudoorthogonal code signals 
. The index s  points to a set of signals from one entire set of sN  dimensions that can  { } { }1 2( ) ( ), ( ),... ( )

kk

s s s s
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be generated for a predetermined length d  of the shift register. In Perez et al. (2009) an algorithm is given for 
generating Kasami codes which have a correlation function with minimal side lobes of about 1/ cN . 
Since generated probing signals are compound signals, the signal-to-noise ratio (SNR) is achieved by selecting the 
length of the code (Kasami, 1966). By increasing the length of the shift register from 6 to 8 bits, one can improve 
the SNR after deconvolution at 6 dB However, in non-destructive tests, it was found that the use of a signal with 63 
periods essentially increases the dead zone size, not to mention Kasami codes with longer duration. 
Figure 2 on the left shows the module of the correlation function ( )nmR τ  ( 5, 1, 2,...8n m= = ) for 5cf =  MHz 
carrier frequency and the length of the shift register 6d = . The initial value of the shift register is {1 1 1 0 1 1}, and 
feedback is given as {0 1 0 0 0 1}. Duration of probing signals is 12.6tw =  µs. The maximum value of the 
correlation function for defining the level of interference between channels was -12.5 dB, and its average level was 
-27.9 dB The width of the autocorrelation function at the 0.5 level was 0.3 µs. The correlation function ( )nmR τ  had 
the same shape for the rest of the values n, that is, the set of code signals approximately satisfies the equation (3). 
Since the whole system has limited bandwidth, the actual phase-shift keyed signals ( )ks t

 will differ from the ideal 
and the correlation function ( )nmR τ  will have a higher level of inter-channel interference. 

 
Figure 2. Example of the correlation function ( )nmR τ  ( 4, 1, 2,...8n m= = ) for 63cN =  

 
A set of code signals  was considered appropriate to use, if the level of inter-channel interference, i.e. the 
average of the correlation function module was less than –6 dB for 15cN = , less than –12 dB for 63cN = , less 
than –18 dB for 255cN = . The quantity of such sets dN  is shown in Table 1. 
 
Table 1. Kasami codes properties 

Register length Code length cN  Quantity of codes 
in set kN  

Quantity of 
code sets dN

Inter-channel  
interference nmR , dB 

4 15 4 31 -6 
6 63 8 185 -12 
8 255 16 198 -18 

 { }( )
k

s
k Ns t
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It should be noted that the theory of CDMA technology also developed multiphase sequences which are also 
pseudoorthogonal, e.g. Frank sequence, Zadoff-Chu sequence (Frank, 1963; Chu, 1972). Zadoff-Chu sequence 
could be useful to accelerate the acquisition rate, as they have a number of advantages. For a sequence with length 

31cN =  it is possible to generate a set of 29kN =  code sequences. There is no possibility to generate Kasami 
codes with 31cN =  length. 
Thus, the idea of acquisition rate increase is the simultaneous emission of special probing signals with all elements 
of the antenna array, or elements grouped into several subarrays. Reconstruction of reflectors images may occur 
due to the decoding of the summed echoes ( )mp t  to the ( )nmp t , as if they were measured in double scan mode. 
This branch in Figure 1 shown with yellow arrows and rectangle. The second branch, shown in Figure 1 with green 
arrow and rectangle, involves the image reconstruction with MEM from summed echoes ( )mp t . 
2.1 Code Signals with Random Frequency 
The code signal with a carrier frequency cf  belonging to one set have the following property 

 
1

( ) 0
kN

k
k

s t
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The echoes from reflectors located in the center of the main beam will arrive at the antenna array elements with 
delays that differ depending on the size of the antenna array and the distance of the elements from each other 
within the array. 
The amplitude of the ( )mp t  echoes generated by the formula (2), due to the property (4), will decrease and, 
consequently, will depend on the distance between the reflector and the antenna array elements. If echoes are 
recorded from the reflector located on the acoustic axis of the antenna array, then the amplitude on the central 
elements of the antenna array, will be less than for the extreme elements due to the property (4). 
To overcome this effect, one can use the following method: for each time code signal carrier frequency it is 
necessary to make the cf fδ+  random, where fδ  is the range of random cf  changes. It is enough to choose a 
range 0.1 cf fδ >  so that ratio (4) is no longer fulfilled. As a result, the correlation function ( )nmR τ  of code echoes 
with random frequency will vary slightly from for constant (see Figure 2). 
2.2. Image of Reconstruction by the C-SAFT Method 
Since this paper uses several methods for reflectors image reconstruction, it is advisable to recall the principle of 
the C-SAFT method. The simplest variant of the C-SAFT enables to obtain the image of reflectors by the measured 
echoes according to formula 

 ˆ( ) ( ( , ) ( , ))i nm n n i m m i
n m

p t t tε = − −r r r r r , (5) 

where ir  – the vector defining the position of the point of the region of interest (ROI), nr  and mr  – vectors 
defining the position of the emitting and receiving antenna array element, ( , )n n it r r and ( , )m m it r r  – the travel time 
of the pulse from the point of emission or reception to the ROI point. Summation by the indices m  and n  takes 
place in accordance with the values of switching matrix C. To get more information about ˆ( )iε r  travel times 
functions can be calculated taking into account the multiple reflection of the pulse from the uneven surfaces of the 
inspected object and taking into account the effect of wave type transformation. 
3. The Signals Decoding 
After selecting a set of code signals  one needs to reconstruct the ( )nmp t  signals from measured ( )mp t  
signals. If we use the analogy of color shown in Figure 1, the proper decoding allows us to select ( )nmp t  signals 
«painted» in only one color from the ( )mp t  source set. Given the fact that the pulses with «different colors» may 
be very close to each other, the decoding algorithm has to provide a precise time resolution. 
The efficiency of the echo signals decoding algorithms depends on the type of reflectors and their number, since 
this influences how close echoes will be located to each other. That is the quality of the decoding echoes from one 
point of the reflector can be rather high (Bazulin, 2015), but for the processing of echoes from many reflectors, the 
reconstructed image can have unacceptably high levels of inter-channel interference. 
3.1 Decoding using Matched Filtering 
A common method for decoding a compression of compound ( )mp t  signals involves using the matched filter with 
the code signal ( )ns t . Given that the matched filtering in the time domain is equivalent to convolution (Bernard, 
2001), the decoding operation can be written as 

{ }( )
kk N

s t
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 ( ) ( ) ( )nm m np t p s t dτ τ τ
∞
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This algorithm has a high speed of operation and allows one to reconstruct images at a frequency greater than 10 
Hz, but it is not possible to get a low level of inter-channel interference and achieve the effect of super-resolution. 
3.2 The Decoding using Maximum Entropy Method 
A more sophisticated method of simple signals or compound signals deconvolution is based on the of maximum 
entropy method (MEM) (A. E. Bazulin & E. G. Bazulin, 2009). The convolution operation in equation (2) can be 
written in matrix form as: 

 s Gs n∞= + , (7) 

where the s  – column vector with the measured echo tN  samples, G  circulant matrix with t tN N×  size, with 
rows built from code signals { }ns t , s∞  – undistorted function that one want to restore, n – column vector of 
measurements noise. The braces in formulas indicate that the function is represented in a discrete form at the tN  
time point. 
The task of the deconvolution is to restore the s∞  by the measured signal ( )ns t , taking into account the { }ns t . The 
problem (7) is ill-posed and Tikhonov and Arsenin (1986) developed a method of regularization, justifying the 
replacement problem in the form (7) for the optimization problem which is resistant to small changes in the input 
data s  
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where 2 ˆ ˆ( { }) { } { }s t s t s tχ = −  – squared residual in the tNR  metric, ˆ( { })s tΩ  – stabilizing functional, α  – 
Lagrange multiplier (regularization parameter). Estimation of the measured signal comes from the convolution 
ˆ ˆ{ } { } { }ns t s t s t∞= ⊗ , where ˆ { }s t∞  is estimation of the desired signal for a system with an infinite bandwidth, { }ns t  – 
coded signal of the n th antenna array element.  
The reason for using the stabilizing functional is to take into account a priori information about the properties of 
solutions and thereby narrow the search for solutions in solving of ill-posed problems. The cross-entropy of ŝ  
(Kullback, 1968) can be used as the stabilizing functionality and (8) could be rewritten as 
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where im  is an a priori model or solution s  estimate. In the simplest case, a constant value im μ=  can be used. 
In Maisinger, Hobson, and Lasenby (2003) the cross-entropy of oscillating function was calculated according to 
formula 
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where it is recommended to take μ  equal to 0.01 of the average value of the signal s . For an effective search of 
the minimum for functions of several variables by the second order methods the gradient and the Hessian of the 
expression (9) can be expressed as follows 
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In formula (11) Hessian has the form of a diagonal matrix, this can accelerate the work of optimizing algorithms 
and reduce the requirements for the amount of RAM. 
Thus, if the ( ) ( )ms t p t=  signal is a sum of the signals which are proportional to the code signal in accordance with 
formula (2), one can restore the ( )nmp t  signal by deconvolution of the measured ( )mp t  echoes according to 
formula (9) with the calculation of the entropy, its gradient and Hessian by formulas (10) and (11). The matrix G  
should be built with use of the code signal ( )ns t . Such a decoding method leads to the reconstruction of the signal 
estimate ˆ ( ) ( )nm nmp t p t∞≈  with super-resolution. 
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3.3 Additional Techniques to Improve the SNR 
3.3.1 Using of Multiple Kasami Code Sets for One Antenna Array 
For a Kasami code sequence with code length 63cN =  a set consists of eight signals ( ). Therefore, an 
antenna array of 32 elements ( 32eN = ) could be divided down into four subarrays ( 4sN = ), each of which consists 
of 8 elements. 
For the full salvo measurement in CDMA mode it is necessary to carry out 16 cycles of measurements 2

tr sN N= : 
radiating with the first subarray and receiving by the first subarray, radiating with the first subarray and receiving 
by the second subarray and so on until the fourth subarray radiates and receives on its own. 
For each subarray measurement cycle one can use the same set of code signals  . However, to reduce 
the level of inter-channel noise, one can use the following technique – use a different set of Kasami codes for each 
measurement cycle. 

 { }{ } { } { } { }{ }1 2( ) ( ) , ( ) ,... ( ) tr

k k k k
tr

tr N
k k k kN N N NN

s t s t s t s t= , 1,2,... trtr N= . (12) 

Since each set of correlation functions away from the main lobe has the form shown on Figure 2, it is natural to 
expect a decrease in the level of inter-channel interference at trN  due to the fact that noise will not add 
coherently. This approach is more effective, when more elements eN  in an antenna array are used and a larger the 
number trN  of sets of encoding signals used. 
Antenna array can be divided into subarrays in several ways. Figure 3 (top) shows the case of the creation of four 
compact subarrays for 32eN = , and Figure 3 (below) shows the creation of four sparse subarrays. There is also a 
variant where subarrays are created with a random selection of antenna array elements. 

 
Figure 3. Two versions for the splitting of the antenna array with 32eN =  at the subarrays. The elements of each 

subarray are marked with a different color 
 
For Kasami code sequence with code length 15cN =  set consists of four signals ( 4kN = ). Therefore, an antenna 
array of 32 elements ( 32eN = ) could be divided down into eight subarrays. For this case 64trN =  and the 
acquisition time in CDMA mode could be decreased only by half when compared with to double scan mode. 
3.3.2 Using Multiple Kasami Code Sets for Different Antenna Array Positions  
One can increase the spatial aperture of the antenna array when echoes are measured at multiple antenna array 
spatial positions wN  and the final image is formed by the coherent summation of wN  partial images (Bazulin, 
Vopilkin, & Tikhonov, 2015) reconstructed for each position of the antenna array. In this case, the level of 
inter-channel noise can be further reduced through a further generalization of the Section 2.4.1 approach, i.e. to use 
a different set of code signals with trN  length for each position of the antenna array 
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( ) ( ) , ( ) ,... ( )
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tr tr tr tr
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When using such an approach it is natural to expect a further reduction of the noise level in the final image at wN  
with the coherent summation of wN

 partial images. For the 32 element antenna array and 63cN =  the number of 
positions wN  for which one can use a different set of code combinations is / 11w d trN N N= ≈ . For the case when 

15cN = , the 1wN ≈  and this technique is not available. 
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4. Image Reconstruction without Intermediate Signals Decoding 
Section 2 described the methods that allow one to obtain ˆ ( )nmp t  echoes as if measured in double scan mode, and 
how to undertake image reconstruction by the C-SAFT method. In Bazulin (2013, 2014) MEM was proposed as a 
way to reconstruct reflectors images from the echoes measured during double or triple scanning using sparse 
switching matrix C . Such an approach allows the reconstruction of the image ( )iε r  with high resolution and low 
noise, using about 10% of the full set of echoes. 
Let the solution of the direct problem, i.e. the calculation of the scattered field ( , )rp tr  by present ( , )tq tr  and 

( )ε r  can be written as follows: 

 ( )( , ) ( ), ( , )r tp t P q tε=r r r . (14) 

If the direct problem is linear or could be linearized, then formula (14) can be written in the form of a matrix 
similar to formula (7) 

 p G nε= + , (15) 
where matrix G  describes the propagation of ultrasonic waves from the source point tr  to the reflector and to the 
point of reception point rr , vector n  – measurements noise. Since the G  matrix is ill-conditioned, then, as in 
Section 3.2 for the solution (15) one can apply a regularization by formula (9). From the perspective of 
mathematics there is no difference between formulas (7) and (15); physically there is principle difference, since 
these formulas describe different physical processes. 
If one uses as the source data not ( )nmp t  but CDMA mode signals ( )mp t  MEM also allows to receive images with 
super-resolution and low noise. The image reconstruction algorithm is similar to formula (9) and can be written as 
follows 

 ( )2

1ˆ

ˆˆ ˆ ˆ ˆ ˆarg min ( ) ( ) , ( ) ln
x z

N Nx z

N N
i

i
is R i

H H
m
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where  is the squared residual in the metric x zN NR  determined by size amount of ROI, 
ˆˆ ( ; )mp t ε  is estimate of echoes from a given ε̂ . This reconstruction option in shown on the right hand of Figure 1 

with a green arrow and square. To solve equation (16 ) or (9), one can use the second order iterative procedures to 
find the minimum of many variables function. Gradient and Hessian are calculated by formulas (10) and (11). To 
distinguish the method used for the echoes deconvolution with MEM (see Section 3.2), the method considered in 
this Section will be called as MEM+C-SAFT. 
The main methodological problem of MEM+C-SAFT practical application is the selection of regularization 
parameter α  and background amplitude μ . There are exact and empirical methods to choose: the α –residual 
method, the method of cross-checking, L-curve method and others. However, some methods are iterative and 
therefore require substantial computing resources, and others need more information, such as the value of the noise 
dispersion, which may not be estimated with sufficient accuracy. In many practical papers devoted to the 
application of the MEM, the problem (16) is solved for a variety of regularization parameters α , and one to 
choose the best solution according to some criteria. In this paper we chose α̂ε  with best focusing (e.g. with 
minimal size of point-type reflector image). The matrix form of equation (15) makes possible to estimate the ε̂  
function similar to the correlation formula as 

 ˆ TG pε = , (17) 

where the symbol T denotes the transposed matrix. 
4.1 The Required Computing Resources 
To obtain an 200×200 pixels image a matrix G  has size 40 000×40 000. If one works with doubles, then one need 
128 GB of RAM. The times for some operations for prectical MEM+C-SAFT calculation on PC with 12 
processors are shown in the Table 2. 
If one uses the single-precision or an integer data format, then the memory requirements can be reduced by ten 
times. If one will optimize the software implementation of the MEM+C-SAFT algorithm, it can be expected to 
speed up ten times and ten times reduce required RAM. Besides the rapid development of computer technology 
reduces the technical problems of the MEM+C-SAFT implementation. 
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Table 2. The times for some operations for MEM+C-SAFT 
Stage Time Comment 
G matrix calculation ≈70 sec Time could be decreased up to two orders of magnitude 

due to the use of parallelizing calculations 
G matrix transposition ≈10 sec  
Hessian calculation ≈2500 sec The most time consuming operation to accelerate, as  

should be done about 64×1012 operations  
Image calculation with formula (17) ≈2 sec  
Minimization of function 
(16) (MEM+C-SAFT) 

Minutes Time depends on α  and μ  values 

 
5. Numerical Experiments 
To test the proposed algorithms simple echo calculations were performed according to (1) from the point scatterers 
and antenna array without a wedge. The sound velocity in the object was assumed to be 5.9 mm/ s. The sampling 
frequency is 50 MHz 
Ten point reflectors with different reflection coefficients were selected as the test objects, the parameters of which 
are given in the Table 3. A scheme of the numerical experiment is shown in Figure 4. 
 
Table 3. Parameters of point reflectors 

Reflector number 1 2 3 4 5 6 7 8 9 10 
x, mm 0 0 0 0 0 0 0 0 0 0 
z, mm 30 31 32 33 34 35 36 37 38 39 
Reflection coefficient ( )iε r  0.1 1.0 0.2 0.9 0.3 0.8 0.4 0.7 0.5 0.6 

 

 
Figure 4. Scheme of the numerical experiment 

 
Figure 5 (left hand) shows the ideal resulting image of the ten point reflectors when indication size is one pixel, and 
the image is restored by C-SAFT from echoes measured in double scanning mode with an antenna array of 16 
elements with a pitch 1.0 mm, for the full switching matrix C  according to formula (1) (right hand). The probe 
pulse was a radio signal with 5 MHz carrier frequency and a Gaussian envelope with three periods length. C-SAFT 
images allow the detection of all reflectors including the first, which has the smallest reflection coefficient. 



www.ccsenet.org/apr Applied Physics Research Vol. 8, No. 1; 2016 

56 

Moreover indications amplitudes are within 2% identical range of the specified ( )iε r
 
in Table 2. Longitudinal and 

front resolutions correspond to the length of the probe pulse and the aperture of the antenna array. The level of 
background noise along the acoustic axis of the antenna array is less than -40 dB. 
 

 
Figure 5. On the left an ideal image of the test object, on the right C-SAFT restored image for echoes measured in 

double scan mode 
 
5.1 Kasami Codes with Length 63 
5.1.1 Antenna Array with 16 Elements and 1.0 mm Pitch 
Since for 6d =  the number of signals in one set is 8kN = , an antenna array of 16 elements can be divided into two 
subarrays. The first corresponds to the array elements 1 to 8, and the second – from 9 to 16 (similar to Figure 3, top). 
Therefore it was necessary to carry out four measurements for subarrays ( 4trN = ), that is, instead of the 256 
echoes for 16 cycles of radiation in double scan method we measured 32 echoes for 4 cycles of radiation. In 
comparison with the double scan this means a fourfold increase in acquisition rate and an eightfold decrease in 
memory capacity required for recording the echo signals and transmitting them over the communication channel. 
 

 
Figure 6. C-SAFT image of the test object, when echoes are decoded with matched filtering (left) and by the 

MEM+C-SAFT (right). 16 elements array was not divided to subarrays 
 
Figure 6 (left) shows the result of restoring a C-SAFT image decoding using matched filtering according to 
formula (6) in the frequency range [0.5, 8.5] MHz. For each of the four measurement sublattices ( 4trN = ) a 
specific set of Kasami codes was used in accordance with (12). The maximum amplitude of inter-channel noise 
was –16 dB, making the reconstructed image of little practical use, since the images from reflectors # 1, 3 and 5 is 
extremely difficult to identify. If decoding is performed with MME according to (9), ( 5α = , 410μ −= ), the 
maximum value of the interchannel noise in an image reduced to minus 24 dB (Figure 6, right), the beam 
resolution decreased twice. However, the amplitude of the reflectors # 1, 3 and 5 are still extremely difficult to 
identify. For this reason, the image is still not high-quality. 
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Two Kasami codes sets can be combined into one set. This will allow us to increase the acquisition rate for a 16 
element array, not four times but sixteen times. However, this will lead to an increase in inter-channel noise, 
because, using the terminology of the theory of communication, the communication channel will be used not by 
eight subscribers at the same time, but by sixteen. 
The image may be reconstructed by the MEM+C-SAFT with formula (16) without decoding echoes. Figure 7 
(right) shows image reconstruction with correlation method (Gutiérrez-Fernández, Jiménez, Martín-Arguedas, 
Ureña, & Hernández, 2013), and on the right by the MEM+C-SAFT ( 0.1α = , 410μ −= ). The image reconstructed 
by the correlation method, is quite close to that shown in Figure 6 on the left and has a high noise level that does not 
allow us to confidently detect reflectors # 1, 3 and 5. However, the image reconstructed by MEM+C-SAFT, is 
almost identical with the ideal, shown in Figure 5 (left). It can be considered a high image quality, since the noise 
level is less than minus 60 dB, and the beam and front resolutions increased more than fourfold compared to the 
image reconstructed by the correlation method. The amplitudes of reflectors differ from the ideal values of less 
than 1%. Of course, such an increase in image quality is due to the absence of noise, including the model noise, 
allowing the estimation of echoes in formula (16) to be almost the same as echoes when «measured 
experimentally». Unfortunately, the MEM+C-SAFT does not allow us to build real time images without 
conducting calculations on a supercomputer. 
 

 
Figure 7. The image reconstructed with correlation method (left) and by MEM+C-SAFT (right). 16 elements array 
 
Two Kasami codes sets, each of 8kN =  length can be combined and the resulting MEM+C-SAFT, still gives an 
ideal image similar to Figure 7 (right). Moreover, the measurement of the echo is takes sixteen times less time in 
comparison with the double scanning method, and the size of the measured echoes ( )mp t  is sixteen times less than 

( )nmp t . 
5.1.2 Antenna array with 32 Elements and 0.5 mm Pitch 
Using a 32 element antenna array with 0.5 mm pitch should improve the image quality, if one splits the antenna 
array into four subarrays, and for each radiating-receiving pair chooses a code set (see Section 3.3.1). Such an 
approach will allow us to measure not 1 024 echoes for 32 cycles, but only 128 echoes per 16trN =  cycles, that is, 
the acquisition rate is only 50% faster, but the amount of memory required to store the echo is reduced eight times. 
The antenna array has been split into four subarrays (see Figure 3, top). Figure 8 (left) shows the result of a 
C-SAFT image reconstruction from echoes decoded using matched filtering according to formula (6) in the 
frequency range [0.5, 8.5] MHz The image is sufficiently close to the image shown in Figure 5 (right). Figure 8 
shows (right) shows an image reconstructed from echoes decoded with MEM (8) ( 5α = , 410μ −= ). Reflector 
images in Figure 8 have a noise level of approximately 6 dB less than the same images in Figure 6. It is still 
difficult to identify reflectors # 1 and 3. 
If the antenna array is divided into four sparse subarrays (see. Figure 3, bottom), the images which are 
reconstructed with C-SAFT from echoes decoded with matched filter and MEM, are shown in Figure 9. It can be 
seen that the noise level is noticeably smaller than in Figure 8. 
If the antenna array is divided into four sparse subarrays (see Figure 3, bottom), the images reconstructed with 
C-SAFT from echoes decoded with matched filter and MEM, are shown at Figure. 9. It can be seen that the noise 
level is noticeably smaller than in figure. 8. Comparison of images at Figure 8 and Figure 9 allows making some 
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conclusions. First, it is better to split an antenna array into subarrays with as big aperture for each as possible. One 
variant is shown at Figure 3 (bottom). Secondly, echoes deconvolution with MEM on the one hand allows to 
reduce the inter-channel noise and improve the resolution, but on the other hand there are some amplitude 
distortions. This leads to the fact that it is difficult to detect reflectors # 1 and 3 at Figure 9 (right). 
 

 
Figure 8. C-SAFT image of the test object, when echoes decoded with matched filtering (left) and by the MEM 

(right). 32 elements array divided in four subarrays 

 
Figure 9. C-SAFT image of the test object, when echoes decoded with matched filtering (left) and by the MEM 

(right). 32 elements array was divided in four sparse subarrays 
 
If, in order to maximize the acquisition rate, an antenna array is not split and uses a set of 32 code signals, the 
reconstructed images are shown in Figure 10. The noise level is more than in images reconstructed using an 
antenna array with 16 elements (Figure 6). 

 

 
Figure 10. C-SAFT image of the test object, when echoes decoded with matched filtering (left) and by the MEM 

(right). 32 elements array not divided into four sparse subarrays 
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An image reconstructed with MEM+C-SAFT by formula (16) without decoding the echoes, is again 
indistinguishable from the ideal image in Figure 7 (right). 
5.2 Kasami Codes with Length 15 
Since for 4d =  the number of signals in one set 4kN =  , and the code length 15cN =

 – the 16 elements antenna 
array was split into four subarrays ( , 16trN = ). So we had to make sixteen «measurements» with 
subarrays, i. e. instead of 256 echoes for 16 radiation cycles we «measured» 64 echoes for the same 16 radiation 
cycles. That is, this approach has allowed reduce fourfold the amount of memory required to record the echoes and 
transmit it over the communication channel. 
Figure 11 (left) shows the result of a C-SAFT image reconstruction from echoes decoded using matched filtering 
according to formula (6) in the frequency range [0.5, 8.5] MHz In comparison to Figure 6 (left) the maximum noise 
amplitude decreased to –18 dB, and it is possible to detect reflector # 5. However, the noise in the transverse 
direction was increased significantly, which would not allow us to detect a reflector with a small amplitude, offset 
from the axis of the antenna array. Image reconstructed from echoes decoded with MME ( 5α = , 410μ −= ) has a 
halved longitudinal resolution. We note that images in Figure 11 have no higher quality when compared with 
Figure 5 (right). 
 

 

Figure 11. C-SAFT image of the test object, when echoes decoded with matched filtering (left) and by the MEM 
(right). 16 elements array divided in four subarrays. The length of the Kasami codes is 15 

 
If we combine four Kasami codes in one set and increase acquisition rate by sixteen times, this leads to a 
significant drop in image quality (Figure 12), even in comparison with Figure 11. 
An image reconstructed with MEM+C-SAFT by the formula (16) without decoding the echoes, is still 
indistinguishable from the ideal image in Figure 7 (right). 
 

 
Figure 12. C-SAFT image of the test object, when echoes decoded with matched filtering (left) and by the MEM 

(right). 16 elements array without dividing to subarrays. The length of the Kasami codes is 15 
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6. Model Experiments 
To carry out experiments one needs to have equipment that is capable of emitting code signals from each element. 
Currently, such equipment is being developed in SPC «ECHO+». However, the effectiveness of the proposed 
approach according to formula (16) can be demonstrated as follows. All echoes of shots in usual double scanning 
mode can be summated and this simulates data which could be obtained with simultaneous radiating and receiving 
from all array elements. 
Figure 13 gives the sketch of a duralumin sample with side-drilled holes of a 0.5 mm diameter. The holes are 
located at a depth of 38 mm and the distance between the centers is 2 mm. 32 element antenna array were used with 
an operating frequency of 5 MHz and 0.8 mm pitch mounted on wedge of rexolite with a 35 degrees angle. Echoes 
were measured in four positions when moving in 9 mm steps from the starting point at -32 mm ( 4wN = ). The 
antenna array and a wedge in the first and fourth positions are shown schematically in Figure 13. 
 

 
Figure 13. Test with side drilled holed  

 
Figure 15 shows the result of image reconstruction with C-SAFT by all 4×1024 echoes ( )nmp t  in four antenna 
array positions. Black circles shows the real position of holes. The image does have a high resolution and there are 
false images related to the run round wave and rescattering between holes. So it is hard to determine reflectors 
types and quantity. 
 

 
Figure 14. C-SAFT reconstructed image from all echoes in four array positions ( 4wN = ) 
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It is possible to reconstruct image with MEM+C-SAFT (Bazulin, 2013; Maisinger, Hobson, & Lasenby, 2003) 
with just 1 ( )mp t  echoes set, i.e. using 4×32 echoes instead of 4×1024 echoes. Figure 15 (left) shows the result of 
image reconstruction by correlation method, and (right) by the MEM+C-SAFT ( 20.0α = , 410μ −= ). The image 
reconstructed by the correlation method by formula (17) has a frontal resolution of around 3 mm, and a side lobe 
level at -12 dB The image reconstructed by MEM+C-SAFT, can to be a high quality image because the noise level 
is less than -30 dB, and the longitudinal and frontal resolutions have more than doubled in comparison with the 
image reconstructed by the correlation method. Image reconstructed with MEM+C-SAFT clearly shows three 
holes and image of the fourth hole has a 12 dB lower amplitude due to the screening effect. 

 

 
Figure 15. The image reconstructed by correlation method (left) and by MEM+C-SAFT (right) from single shot for 

each of four array positions 
 
Figure 16 (left) shows the image reconstructed by the correlation method, and on (right) by MEM+C-SAFT with 
formula (16) ( 2.5α = , 410μ −= ) from summed 4×32 echoes ( )mp t . Shown in Figure 16 it is quite close to the image 
shown in Figure 15. Summed echoes ( )mp t , contains more information on the reflectors than just the first shot 

1 ( )mp t , and generally their use in MEM+C-SAFT will be more effective. 
 

 
Figure 16. Image reconstructed by correlation method (left) and by MEM+C-SAFT (right). Echoes from each shot 

for each array position were summed before reconstruction 
 
It should be noted that the use of compound signals generated using Kasami codes  should further 
improve the quality of images reconstructed by MEM+C-SAFT, since the objective function will have a greater 
gradient in the neighbourhood of the global minimum. 
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7. Conclusions 
(1) The use of CDMA technology has shown promise for code sequences based on Kasami codes. When the 

length of the shift register is 6d =  for a 32 elements antenna array it can be increase the acquisition rate by 
eight times, and reduce the size of the measured echoes by sixteen times. 

(2) The use of multiple sets of Kasami codes for different subarray combinations and antenna positions by 
formula (12) and (13), reduces the level of inter-channel noise, which allows the detection of small reflectors 
(Figure 9). 

(3) Echoes decoding can be undertaken with matched filtering by formula (6) or MEM by formula (9), which 
gives more than 6 dB less noise, but distorts the amplitudes of reflections from reflectors with low reflection 
coefficient. 

(4) The result of echo decoding and, therefore, the image quality strongly depends on the number of reflector; the 
more reflectors – the higher the level of inter-channel interference. 

(5) It is better to choose the subarrays with maximum length (Figure 3, Figure 8 and Figure 9). 
(6) In order to implement this approach, the flaw detector hardware must be able to emit compound signals. 
(7) Image reconstruction by MEM+C-SAFT in numerical and model experiments by the formula (16) from 

echoes ( )mp t  allowed us to obtain almost perfect images (Figure 5, left and Figure 7, right). The acquisition 
time and memory required for storing echoes is eN  times less than for double scanning with switch matrix 

1nm =C . The result is perfect even for Kasami codes where length is 15cN =  without splitting array on 
subarrays. However, this approach does not allow for real time images reconstruction. It is also important to 
state that the application of formula (16) can be used for simple signals, rather than a set of pseudo-orthogonal 
signals. It does not require special equipment to emit compound signals. 

(8) The proposed approach is promising for the inspection of thick-walled objects made of materials with high 
attenuation, because the use of compound signals increases the SNR and the such thickness would require the 
use of antenna arrays with many elements. 
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