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Abstract 
It is common knowledge that properties of any system cannot be reduced to the sum of properties of its elements 
as relations between elements play an important role in the system structure and therefore in the system behavior. 
In the given paper the systems constructed from rather simple well-known elements, which spatial interposition 
is characterized by spherical symmetry, are examined. Each element is a source of a field that is easy calculated. 
However the result of superposition of these fields is beyond the scope of classical notions. 
Keywords: magneto-electric systems, spherical symmetry, superposition of kinematically begotten fields 
1. Introduction 
There exist in the nature two completely different mechanisms of field’s transmission (Leus, Taylor, 2012; Leus 
et al., 2013a, 2013b). In an electromagnetic wave vectors E and B  do not move at all, but synchronously vary 
their values in space. On the contrary, magnetic field of a moving permanent magnet moves in space 
(Zajev-Dokuchajev effect), and electric field of a moving charge moves in space (Rowland-Eihenvald effect) 
together with their carriers like a rigid body (Leus, 2013). These both effects are of purely kinematical origin and 
they have nothing to do with electro-dynamic signals propagating in space with the light speed (Leus & Smith B., 
2014). 
Consider the following situation. There is a narrow gap across the cylindrical bar-magnet where fringing effects 
are to be neglected and, therefore, magnetic field is very nearly uniform inside with vector  B  directed up 
vertically (Figure 1). If the bar-magnet (both parts) rotates about its central axis with an angle velocity ω  (for 
example, counterclockwise if viewing from the top), then an electric field ۳ = ۰ ×  ,is induced inside the gap ܞ
due to the Zajev-Dokuchajev magneto-kinematical effect (Leus & Zatolokin, 2006), which is a natural 
consequence of “drugging” of the field by a moving carrier.  
From the times of Faraday the physicists are divided into two opposite parties: ‘fixists’, who believe that 
magnetic field remains steady when its carrier – permanent magnet rotates, and ‘mobilists’, who are confident 
the field does rotate, i.e. “the lines of force sit fixed on a steel magnet, like bristles on a brush” as expressed by a 
German physicist R.W. Pohl (Pohl, 1960). That is why this point of view is termed ‘the bristle theory’. Recently 
in the series of delicate experiments the validity of the latter has been irrefutably proved (Leus & Taylor, 2011; 
Taylor & Leus, 2012). “The moving field theory or bristle theory is not only simpler, but also more logical, more 
natural, more plausible, more consistent and more economical. Furthermore, not contradicted by any theoretical 
or experimental evidence, it helps students visualize the relevant electromagnetic processes more vividly than the 
fixed field theory” (Rajaraman, 2008). Therefore magnetic flux moves synchronously with the magnet and 
consequently the magnet’s material cannot be polarized.  
In the rectangular coordinates ( x , y , z ) the magnetic induction B  has components (0, 0, )B , the linear 
velocity ܞ has components (−߱ݔ, ,ݕ߱ 0) and the electric tension E  has components (−ݔ߱ܤ, ,ݕ߱ܤ− 0). Thus 
we have a vector field converging to the axis of rotation and progressively diminishing to the zero-value in the 
very centre. We deduce from this that ܿ۳ ݈ݎݑ ≡ ૙ and ݀݅۳ ݒ = ߱ܤ− − ߱ܤ + 0 = ߱ܤ2− ≠ 0 without any 
charges everywhere in the gap, i.e. in this instance the stationary electric field cannot satisfy the Maxwell’s 
equations.  
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Figure 1. Electric field induced in the narrow pole gap  

 
In the book ‘Classical Electricity and Magnetism’ (Panofsky & Phillips, 1975, p. 338) you can read the 
following would-be comment to the above instance: “Note, however, that the effective electric field in the 
rotating frame is given by ۳௥ =  for low velocities; this expression has a non-vanishing divergence, and ܚܤ߱
thus a volume charge is developed”. The authors are so much right as wrong in their assertion: electricity of 
kinematical origin, indeed, is developed, but it does exist in the laboratory’s non-rotating frame. As for “a 
volume charge”, it is putative rather than real, and it would be much more consistent to say: “۳௥ has a 
non-vanishing divergence as if a volume charge were developed”. 
Let us consider one more example of a kinematically begotten field, this time due to the conjugate 
Rowland-Eihenvald effect. A sphere made of a conductive material is charged with a constant superficial density 
so that the full charge ݍ is uniformly distributed over all the surface of the sphere. In this case the electrostatic 
field in air outside the sphere coincides with the field of a point charge ݍ focused in the centre of the sphere:  ۳ =  . ଷݎ଴ߝߨ4࢘ݍ
At any point ܣ electric field vector ۳ is collinear with the radius-vector ࢘ of this point having Cartesian 
coordinates ݔ, ,ݕ   .(Figure 2) ݖ

 

Figure 2. Magnetic field induced by rotating charged sphere 

With an accuracy to the constant factor ߝߨ4/ݍ଴ electric vector ۳௫,௬,௭ has the components  
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=  ௫ܧ  ଷݎݔ =  ௬ܧ   ,  ଷݎݕ =  ௭ܧ    ,   , ଷݎݖ
where ݎ is the length of radius-vector: ݎ = ඥݔଶ + ଶݕ + ଶݖ = (… )ଵ/ଶ. Instantaneous velocity ܞ at a point (ݔ, ,ݕ ݒ has the absolute value (ݖ = ߠ݊݅ݏݎ߱ = ߱ඥݔଶ + ଶݕ = and the components v௫ , ߩ߱ = ߩ/ݕݒ− = v௬,ݕ߱− = = ߩ/ݔݒ ,ݔ߱  v௭ = 0 . Lorentz transform gives the following expression for magnetic vector:           ۰ = ߛ c૛ ൗ ܞ) × ۳), where c is light speed, and the relativistic gamma-factor ߛ = 1/ඥ1 − ଶ/ܿଶݒ = ቈ1 − ߱ଶܿଶ ଶݔ) + ଶ)቉ିଵ/ଶݕ = ሾ1 − ܾଶ(ݔଶ + ଶ)ሿିଵ/ଶݕ = ሾ. . ሿିଵ/ଶ. 
So, its components are ܤ௫  = ߱ܿଶ ∙ ଷݎߛ =  ௬ܤ   , ݖݔ ߱ܿଶ ∙ ଷݎߛ =  ௭ܤ    , ݖݕ − ߱ܿଶ ∙ ଷݎ ߛ ଶݔ)  +  ,(ଶݕ
Denote ݂(ݔ, ,ݕ (ݖ = ߛ ଷൗݎ = ሾ. . ሿିଵ/ଶ ∙ (… )ିଷ/ଶ   and partial derivatives will be ߲݂߲ݔ = ܾଶݔ ሾ. . ሿିଷ/ଶ. (… )ିଷ/ଶ − .ሾ ݔ3  . ሿିଵ/ଶ ∙ (… )ିହ/ଶ , ߲݂߲ݕ =  ܾଶݕ ሾ. . ሿିଷ/ଶ. (… )ିଷ/ଶ − .ሾ ݕ3  . ሿିଵ/ଶ ∙ (… )ିହ/ଶ, ߲݂߲ݖ = .ሾ ݖ3−  . ሿିଵ/ଶ ∙ (… )ିହ/ଶ. 
Then, using the differentiation rule, we can write: ߲ܤ௫߲ݔ  = ߱ܿଶ ൬݂ݖ + ݖݔ ൰ݔ߲݂߲ , ݕ௬߲ܤ߲  = ߱ܿଶ ൬݂ݖ + ݖݕ ൰ݕ߲݂߲ , ݖ௭߲ܤ߲ =  − ߱ܿଶ ଶݔ)  + (ଶݕ  . ݖ߲݂߲
Substitution of the above expressions for derivatives డ௙డ௫ , డ௙డ௬  , డ௙డ௭ allows us to calculate the divergence for the 
magnetic field of kinematical origin. Rather cumbersome manipulations having omitted, the final result may be 
present as follows: ݀݅۰ ݒ = ଶܿݖ߱  ሾ. . ሿିଵ/ଶ ∙ (… )ିଷ/ଶ ቈ2 + ܾଶ(ݔଶ + ଶ)1ݕ − ܾଶ(ݔଶ + ଶ)቉ݕ = ଶܿݖ߱  ∙ ଷݎߛ ቆ2 + ߱ଶߩଶ/ܿଶ1 − ߱ଶߩଶ ܿଶ⁄ ቇ . 
So, divergence of the magnetic field of kinematical origin in this case is essentially non zero. Naturally, this 
approximation is valid only for distances ߩ < ܿ/߱, because a linear speed ݒ =  cannot exceed the light ߩ߱
speed ܿ . However, even for ߛ ≅ 1  the divergence remains different from zero. Taking account of 
Fitzgerald-Lorentz contraction leads to the general-relativistic bending of space. 
In this respect it seems relevant to remind a scientific paper “A Question in General Relativity” published three 
quarters of century ago under initiative by J.R. Oppenheimer. ‘Consider two concentric spheres with equal and 
opposite total charges uniformly distributed over their surfaces. When the spheres are at rest, the electric and 
magnetic fields outside the spheres vanish. When the spheres are in uniform rotation about an axis through their 
centre, the electric field outside vanishes, while the magnetic field does not ” (Schiff, 1939). In itself, this is an 
example of spherical capacitor containing all the electric field inside them. However, it is necessary to stipulate 
the obligatory opposite direction for rotation both spheres. Here we have a curious but not surprising feature 
because of billions and billions similar examples before our eyes: magnetic field existing around a neutral wire 
with direct current. “Getting ahead of the story, it is interesting to underline that, if the field of a moving charge 
is subject to dilatation, any wire with current (conductivity electrons are moving with velocity ܞ) must seem to be 
negatively charged. And, if the same wire is moving with velocity (–ܞ), it must seem positively charged ” (Leus, 
2014). An electric field outside the file of charged particles was examined depending on the speed ݒ of them. 
At a distance ℎ from the wire of length 2ݏ the difference between values of electric strengths provided by 
moving and stationary charge distributions is ܧ௩ − ଴ܧ = (ଶݏ଴ߝߨℎ/4ߪ) ∙  ,ଶ(ܿ/ݒ)
where ߪ denotes the linear density of charge. This so called effect of the second order had been, possibly, 
observed in the well-known experiment by Edwards and Lemon, who used a superconductive ring with direct 
current. It is obvious that for a direct current in ordinary wire the difference ܧ௩ −  ଴ is not perceptible. Anotherܧ
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matter when an electron beam instead of wire is dealt. In this case ݒ/ܿ ≈ 1 and the effect should be thoroughly 
appreciable (Leus, 2014). 
Could we say that the Maxwell’s equations are incorrect? On no account! It would be best to speak about a 
validity region. As it is thought, the boundary lies somewhere between electrostatics-electrodynamics on the 
one hand, and magneto-electro-kinematics on the other hand. Here bellow we consider some more complicated 
cases of unusual magneto-electro-kinematic phenomenon arising due to superposition principle. Please, don’t 
forget that these ‘true oddities’ pertain to a newfound realm in electromagnetism. 
In sections 2-4 detailed description of a sophisticated system is present, starting from one magnetic rotator and 
gradually reaching the final version of many magnetic rotators situating over sphere. In section 5 a reciprocally 
symmetric system of many electric rotators is briefly considered using niceties of the previous magnetic example. 
All intermediate geometrical proves are transferred into appendix. 
2. A Solid Magnetized Ball 
“Although physicist often use the term ‘sphere’ to mean the solid ball, mathematicians definitely do not” 
(Weisstein, 1999, p. 94). Although the very gist of the paper is particularly physical, we shall use the term `ball’ 
to mean the round body but the term `sphere’ to mean the surface of such a body. A solid magnetized ball of 
radius a  is the basic unit from which our spherical magneto-system is made up (the main composing element 
for our spherical magneto-system). A ball with a uniform permanent magnetization M parallel to the z axis is 
embedded in a non-permeable medium --- vacuum to be exact. Its field is a pure field of a magnetic dipole (no 
an azimuthal component) with dipole moment ܕ = 4 3ൗ  For the sphere with uniform magnetization, the“ .ۻଷܽߨ
fields are not only dipole in character asymptotically, but also close to the sphere. For this special geometry 
(and this only) there are no higher multipoles” (Jackson, 1975, p. 195). The external magnetic field B  is 
described by the following equations  ܤ௥ = ଴݉ߤ2 cos ଷݎߴ , ణܤ = ଴݉ߤ sin ଷݎߴ , ఝܤ = 0,  
where r  is radius vector (with magnitude r ) of any point, ߴ is a polar angle, ߮ is an azimuth (Figure 3). 
Here we explicitly introduced the permeability of vacuum ߤ଴ because of use the SI units.  

 
Figure 3. The uniformly magnetized sphere 

 
When a magnetized ball rotates about z  axis with an angular speed ߱, we have a magnetic rotator (m-rotator). 
In spherical coordinates (ߴ ,ݎ, ߮) linear velocity ܞ providing from rotation has just one nonzero azimuthal 
component ݒఝ = ݎ߱ sin ߴ . Let us consider electric field ۳ = ۰ ×  induced outside the ball due to the ܞ
Zajev-Dokuchajev effect. Despite,  ߴ,  ߮ are curvilinear coordinates vector product has to be calculated by the 
same formulae that are valid for Cartesian coordinates because spherical coordinates are orthogonal ones. This 
gives:  ܧ௥ = ଴߱݉ߤ sinଶ ଶݎߴ  , ణܧ = − ଴߱݉ߤ sin ଶݎߴ2 , ఝܧ = 0;    ۳ = ௥ܝ௥ܧ ణܝణܧ + +  ఝ ,                           (1)ܝఝܧ
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where ܝ௥ , , ణܝ  ,ఝ are unit vectors. These equations have been given first in the work of Bogach (Bogachܝ
1996). It is obvious that the direction of a vector E is constant along the each radial line i.e. the coordinate line 
with constant polar angle. Absolute value of a vector E is  ܧ = ටܧ௥ଶ + ణଶܧ = ଴߱݉ߤ sin ଶݎߴ  ඥ1 + 3cosଶ(2)                                                . ߴ 

The angle ∝ between vector E  and unit radial vector ur is defined by the equation  ∝= cos ܿݎܽ ൬۳ ∙ ܧ௥ܝ ൰ = ܿݎܽ cos ൬ sin1√ߴ + 3cosଶߴ൰ . 
Here the vector length and inner product ⋅ rE u  have been calculated by ordinary formulae due to the ߴ ,ݎ are 
orthonormal coordinates. Thus the tilt to the radius-vector depends on the angle ߴ only. From this above we get cos ∝ = sin 1√ߴ + 3cosଶߴ ;  sin ∝ = 2 cos 1√ߴ + 3cosଶ(3)                                                   . ߴ 

Let us take the square: (1 + 3cosଶߴ)cosଶ ∝= sinଶߴ ;   (1 + 3cosଶߴ)sinଶ ∝= 4cosଶߴ . 
With a little manipulation these formulae can be recast to 4cosଶ ∝ −3cosଶ ∝ sinଶߴ = sinଶߴ ;   sinଶ ∝ +3sinଶ ∝ cosଶߴ = 4cosଶߴ , 
and then into  4cosଶ ∝= (1 + 3cosଶ ∝)sinଶߴ ;   sinଶ ∝= (4 − 3sinଶ ∝)cosଶߴ , 
where from we have  sinଶߴ = 4cosଶ ∝1 + 3cosଶ ∝ ;   cosଶߴ = sinଶ ∝4 − 3 + 3cosଶ ∝ . 
At last: sin ߴ = 2 cos ∝√1 + 3cosଶ ∝ ;   cos ߴ = sin ∝√1 + 3cosଶ ∝ .                                                   (4) 

So we get symmetric dependences (3) and (4) between angles ∝ and ߴ. 
3. Two Symmetrically Posed Magnetic Rotators 
Let be a sphere of radius b , i.e. -b sphere. There are a lot of the similar magnetic rotators of radii a  (ܽ ≪ ܾ), 
i.e. -a rotators. These magnetic rotators are distributed all over a sphere in such a manner that their centres are 
located on the spherical surface and the axis of every rotator is directed to the centre of the sphere (Figure 4). Let 
the internal end of the every rotator’s axis be south one ( S ). Let the direction of rotation be counter-clockwise 
when viewed from outside of the sphere. Our aim is to calculate the external field induced due to the 
Zajev-Dokuchajev effect.  

 
Figure 4. Spherical system of magnetic rotators 
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Consider first a simple case of only two -a rotators that are located on the -b sphere symmetrically to the ray 
coming from the sphere centre O  to a given point of view P  (Figure 5). To find the strength of the induced 
electric field E  at this point, we must compute the vector sum of 1E  due to the upper rotator and 2E  due to 
the lower one. Let us use the following geometric statement:  
When the distance R  between the point P  and the centre O  is bigger than 2b , the orthogonal projection 
of vector 1E  at the direction of radial ray OP  holds its sign for all values of positioning angle ߜ between 0 
and ߨ. 
 

 
Figure 5. Resulting field of two symmetrically posed rotators 

 
A proof of the geometric statement can be found in the appendix. From this statement it immediately follows that 
summarized electric vector ۳ = ۳ଵ + ۳ଶ provided by two symmetric rotators (Figure 5) is always directed in 
parallel to the vector OP  whatever values of an angle ߜ would be. It is obvious that if the direction of 
rotation both rotators is changed, the vector E  will change to opposite directed one. Similarly, altering of the 
vector Ewould be due to the change the direction of magnetic axis of both rotators. 
 

 
Figure 6. Resulting field of several symmetrically posed rotators 

 
Let several rotators be placed on the sphere at the same angle ߜ (Figure 6). The electric vector jE induced by 
any j -th rotator in the point ܲ may be resolved into a longitudinal component ۳‖௝ parallel to OP  and a 
transverse component ۳௝ୄ  perpendicular to OP . In general, the longitudinal component of a vector E  (the 
superscript j  may be dropped) is 
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۳‖ = ۳ cos(ܥ − (ߛ = ۳(cos ∝ cos ߛ + sin ∝ sin (ߛ = ۳ sin ߴ cos ߛ + 2 cos ߴ sin1√ߛ + 3cosଶߴ  . 
Here sin ∝ and cos ∝ are substituted through sin and cos ߴ ‖from equations (3). This yields ۳ ߴ = ܧ sin ߴ cos ߛ + 2 cos ߴ sin1√ߛ + 3cosଶߴ ‖ܝ = ଴߱݉ߤ sin ଶݎߴ (sin ߴ cos ߛ + 2 cos ߴ sin ‖ܝ(ߛ =  ,‖ܝ‖ܧ
where ܝ‖ is the longitudinal unit vector and ܧ‖ is the projection’s coordinate (having sign).  
The transverse component of a vector E  is ۳ୄ = ۳ sin(∝ (ߛ− = ۳(sin ∝ cos ߛ − cos ∝ sin (ߛ ܧ = 2cos ߴ cos ߛ − sin ߴ sin1√ߛ + 3cosଶߴ ୄܝ = ଴߱݉ߤ sin ଶݎߴ  (2 cos ߴ cos ߛ − sin ߴ sin ୄܝ(ߛ =  ,ୄܝୄܧ
where ܧ is taken from (2), ୄܝ is the transverse unit vector. When the angle ߴ varies from zero to 2/ߨ, the value 2 cos ߴ cos monotonically decreases from two to zero whereas the value sin ߛ ߴ sinߛ monotonically increases 
from zero to some positive magnitude. Consequently, the expression 2 cos ߴ cos ߛ − sin ߴ sinߛ change sign and 
therefore the transverse component ۳ୄ must necessarily reverse its direction. As it can be seen, both components ۳‖ and ۳ୄ are small when ߴ together with sin are small. When 2 ߴ cos ߴ cos ߛ − sin ߴ sinߛ = 0, the angle ∝ 
becomes equal to the angle ߛ = ߴ ଴ . So the component ۳ୄ reverses its sign at the angleߛ = ଴ߴ = cos ܿݎܽ ቀsinߛ଴ ඥ1 + 3cosଶߛ଴⁄ ቁ, 
which is readily calculated from the equation (4). The value of the angle ߛ଴ depends on the geometric 
parameters ܾ and ܴ of the system under consideration and position of the observer. 
The vector sum ∑ ۳௝ୄ௝  of all transverse components would be zero if the rotator’s centres are set at all of the 
vertices of a regular polygon (Figure 6, up). Hence, the vector sum ∑ ۳‖௝௝  , and due to the geometric statement 
the summarized electric vector ۳ = ∑ ۳௝௝  is directed along the radial ray OP  in parallel (or counter-parallel) 
to the vector OP  whatever values of an angle ߜ would be.  
4. Spherical System of Many Magnetic Rotators 
Let N  -a rotators be evenly allocated all over -b sphere with a nearly random distribution. Consider a tight 
allocation of N  rotators on the sphere. The `tight’ here does mean all N  rotators are tightly embedded so 
that N  is the maximum number (depending on values b  and a ) of -a rotators which may just be inserted 
onto the sphere. Approximately taken. ܰ ≈ ଶܽߨ/ (ଶܾߨ4)0.9069 = ଶ/ܽଶܾ݌4  Here the number ݌  is the 
packing density factor which is equal to 0.9069 for a hexagonal lattice, and to 0.7854 for a square one. The 
set of centers of tightly embedded rotators is to be said ` N - ensemble’. Let {ܽ௡} be an indefinitely decreasing 
sequence of radii, { ௡ܰ} be a correspondent sequence of N - ensembles, and {(۳ୄ)௡} be a correspondent 
sequence of transverse components ۳ୄ at a given point of view P . The sequence {(۳ୄ)௡} of transverse 
components converges to zero.  
Let us slice the -b sphere with a sequence of vertical planes all being orthogonal to the beam OP  (Figure 7), 
so that the width of every ring-shaped strip on the sphere is not more than 3a . Denote iN  the quantity of 
rotators occurring in some stripe (ܰ = ∑ ௜ܰ௜ ). The vector-diagram of the correspondent transverse components ۳௜ୄ  (݅ = 1, 2, … , ௜ܰ) has some small deviations from a regular one (the additional arrows to the up-left). Let us 
distinguish N  vertices of a regular polygon on the middle line of this stripe. Using small translations we can 
pose centers of all iN  rotators overall vertices. An illustrative diagram of all additional vectors and the final 
sum (the bold one to the up-right) is shown in the Figure 7.  
It is intuitively clear that similar operation made on all the strips does diminish the total vector-sum of shifts. The 
greater the number N (or, rather, nN ), the smaller is total shift i.e. the value of the vector(۳ୄ)௡. A more 
striking formal proof is as follows. Let the stochastic event be a result of a chance throwing of the point onto the 

-b sphere with uniform probability distribution. The -a rotator with centre at this point gives the vector ۳ୄ 
that is therefore a rectangular distributed random variable. Its expectation is zero because of the spherical 
symmetry. Due to the law of large numbers the sum of N  similar random variables tends to zero when N  
unlimitedly increases. The chance throwing of the point onto the finite set of -na rotators’ centres -- nN -
ensemble -- gives a discretely distributed vector random variable ۳௡ୄ. The sequence of discrete distributions 
converges to the continual rectangular one when na  infinitely decreases. Hence, the sequence {(۳ୄ)௡} 
converges to zero. 
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Figure 7. Stripe sections on the sphere 

 
The field configuration is rather complicated in the near zone of the spherical system. Consider the field’s 
behaviour in the far zone where the radius of the sphere is noticeably smaller then the length of the beam OP  
(ܾ ≪ ܴ). Therefore, we may substitute respectively the values of , sin ,cosr ϑ ϑ  for , sin , cosR δ δ  and the 
values of cos ,sinγ γ for 1 and ℎ ܴ⁄ = ܾ sin ߜ ܴ⁄  in the expression (for single -a rotator) ܧ‖ଵ = ଴߱݉ߤ sin ଶݎߴ (sin ߴ cos ߛ + 2 cos ߴ sin  ,(ߛ
and so obtain the new one ܧ‖ଵ = ଴ܴ߱݉ଶߤ ൬sin૛ߜ + 2ܾܴ  sin૛ߜ cos  ൰ߜ

that is correct to first order ( /b R ) of magnitude (Figure 8). 

 

 

Figure 8. To the geometrical statement demonstration 
 
The surface area of the -b sphere is 24S bp= . The surface area of a sliced strip between angles ߜ and ߜ +  ߜ݀
is 22 2 sindS hb d b dπ δ π δ δ= ⋅ = ⋅ , and hence the quantity of -a rotators on this strip is 

2 2 2 2((4 ) / ) (2 / ) sindN pb a S dS pb a dδ δ= ⋅ = ⋅ . The correspondent longitudinal coordinate of the vector ݀۳ 
is  ݀ܧ‖ = ଵ݀ܰ‖ܧ = ଴߱݉ܽଶܴଶߤଶܾ݌2 ൬sin૜ߜ + 2ܾܴ  sin૜ߜ cos ൰ߜ  . ߜ݀
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The total longitudinal coordinate would be ܧ = ׬ గ଴)‖ܧ݀ ∑ here the sum) (ߜ is௜  substituted for the integral, and 
the subscript "‖" at E  is omit since the transverse component ⊥E  is stochastically negligible quantity). The 
compounding integrals would be න sinଷߜ݀ ߜగ

଴ = − න sinଶߜ ݀cos ߜగ
଴ = − න (1 − cosଶߜ) ݀cos ߜగ

଴ = ൬−cos ߜ + 13 cosଷߜ൰ |଴గ = 43 ,       (5) 

න sinଷߜ cos ߜ గߜ݀ 
଴ = න sinଷߜ ݀ sin గߜ

଴ = 14 sinସߜ |଴గ = 0. 
The net result (using the expression for a dipole magnetic moment from the section 2) is ܧ ≈ ଴߱݉ܽଶܴଶߤଶܾ݌2 ∙ 43 = ଴߱ߤଶܾ݌2 ∙ ଶܴଶܽܯଷܽߨ4 ∙ 3 ∙ 43 = 329 ∙ ଶܴܯ଴߱ߤଶܾ݌ܽߨ =  , ଴ܴଶߝߨ4ݍ
where ߝ଴ is permittivity of vacuum. Thus a spherical system of many magnetic rotators provides (with an 
accuracy of order /b R ) the Coulombian electric field, where  ݍ = 169 ∙ ݌ߨ ∙ 2ܽ ∙ ଶܾߨ4 ∙ ଴ߤ଴ߝ ܯ߱  = 169 ∙ ݌ߨ ∙ 2ܽܵ ∙ ܯ߱ ܿଶ⁄  

is an effective (not actual!) charge, the value (ܽ݉݌ ∙  and the sign of which depend on the magnitudes and (ܿ݁ݏ
directions of vectors ω  and M . Here ܿ is light speed in vacuum, S  is a surface area of the -b sphere, 
2aS is the volume of a spherical layer as thick as the diameter of -a rotator. 
Examine now a magnetic field of the spherical system under consideration. Magnetic vector ۰ଵ of an -a
rotator has two nonzero coordinates ܤ௥ଵ = ଴݉ߤ2 cos ଷݎߴ , ణଵܤ = ଴݉ߤ sin ଷݎߴ  .  
The longitudinal component parallel (or antiparallel) to the vector OP  has the coordinate ܤ‖ଵ = ൫۰ଵ ∙ ൯‖ܝ = ଷݎ଴݉ߤ (2 cos ߴ cos ߛ − sin ߴ sin  ,(ߛ
where ܝ‖ is the unit vector of the radial ray OP  which -r  and ϑ -  coordinates are cosγ and ( sinγ− ) 
respectively. Using the precedent substitution we get in the far zone  ܤ‖ଵ = ଴ܴ݉ଷߤ (2 cos ߜ − ܾܴ  sin૛ߜ), 
and hence  ݀ܤ‖ = ଵ‖ܤ  ∙ ݀ܰ = ଵ‖ܤ ∙ ܰܵ ݀ܵ = ଴݉ܽଶܴଷߤଶܾ݌2 ൬2 cos ߜ sin ߜ − ܾܴ  sin૜ߜ൰. 
The coordinate of the total longitudinal component of magnetic vector would be ܤ = ׬ గ଴)‖ܤ݀  where the ,(ߜ
integral  න 2 cos ߜ sin ߜ గߜ݀ 

଴ = 2 න sin ߜ  ݀ sin గߜ
଴ = sinଶߜ |଴గ = 0 , 

and the integral ׬ sinଷߜ݀ ߜగ଴ = 4 3ൗ , equation (5). Finally,  ܤ = − 0݉3ܽ2ܴ4ߤ3ܾ݌8 , i.e. the rate of decrease for the  

magnetic field (with moving off the -b sphere) is two orders faster then that for the electric one. The transverse 
component ۰ୄ being stochastically negligible, the field of the spherical system of many magnetic rotators is 
asymptotically Coulombian. Thus we have a charge-free Coulomb-wise field. 
5. Spherical System of Many Electric Rotators 
The electro-kinematical effect ``symmetric’’ to the Zajev-Dokuchajev one is known for a long time. The 
dragging of electric fields by its charge carrier rotating about an axis has been examined by H. Rowland 
(Thomson, 1893, p.23; Rowland, 1878) in the XIX century and by A. Eihenwald (Eihenwald, 1956)) at the very 
inception of the XX. Taking this effect into account, consider a spherical system similar to the one given above 
but combined with many electric -a rotators. 
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An electric -a rotator represents a solid ball carrying the charge q  evenly distributed over the volume or over 

the spherical surface. In the external space we have Coulombian electric field quite like that providing by point  

charge q  located in the ball’s centre: 
2

04 r
q

rπε
=E u . A unit vector ur  is directed outward from the centre  

to a point of view. This ball rotates in a vacuum about some diameter at a constant angle velocity ߱. Due to the 
electro-kinematical Rowland- Eihenwald effect at a given point with radius-vector r  we have a magnetic vector  ۰ = 1 cଶ ൗ ܞ × ۳ = ௤ସగఌబ௖మ௥మ ܞ ×  is the linear velocity corresponding to ૑. The square of light ܞ ௥, where࢛

speed in denominator here determines the smallness of the effect and hence the difficulties of measurement that 
have been completely surmounted only in the experiments by A. Eihenwald. 
Let the axle of rotation of an electric -a rotator be the polar axis of a spherical coordinates (ݎ, ,ߴ ߮). At a point 
of view the components of speed ܞ are ݒ௥ = ణݒ ,0 = ఝݒ ,0 =  Then components of the magnetic .ߴsinݎ߱
vector B  would be,  ۰௥ = 0, ۰ణ = ణܝణܤ = ݎ߱ݍ sin ଶݎ଴ܿଶߝߨ4ߴ ,ణܝ ۰ఝ = 0. 
The spherical system under consideration is similar to the system which has been examined above, merely all 
magnetic -a rotators are substituted for electric -a rotators. 
Let several electric -a rotators be placed on the -b sphere at the same angle δ . The value sin  may be ߛ
presented as sin ߛ = (ܾ sin (ߜ ⁄ݎ  (Figure 8). The projection of the magnetic vector 1B  (due to the 
electro-kinematical effect) at the radial ray OP  is  ܤ‖ଵ = ൫۰ଵ ∙ ൯‖ܝ = ణܤ ∙ (− sin (ߛ = ణܤ− ܾ sin ݎߜ = ߱ݍܾ− sin ଶݎ଴ܿଶߝߨ4ߜ  sin  .ߴ
In the far zone we have  ܤ‖ଵ = ߱ݍܾ− sin ଴ܿଶܴଶߝߨ4ߜ  sin ߜ , ‖ܤ݀ = ଵ‖ܤ ∙ ܰܵ ݀ܵ = − ଴ܿଶܴଶߝߨ4ܽଶߜsin૜ ߱ݍଷܾ݌2  ,ߜ݀
and ܤ‖ = ׬ గ଴(ߜ)‖ܤ݀   .ߜ݀
According to (5), the integral ׬  sin૜ߜ݀ ߜ =గ଴ 4 3ൗ , so the magnetic field in the far zone is ܤ = ଴ܿଶܴଶߝଶܽߨ3߱ݍଷܾ݌2− = ଶܴଶܽߨ3߱ݍ଴ߤଷܾ݌2−  .                                                                    (6) 

The subscript "‖" at B  is omit since the transverse component ۰ୄ is statistically insignificant. The equation 
(6) is a description of the magnetic monopole field where magnetic induction varies according to the inverse 
square law. It is apparent that besides the magnetic field, the Coulombian electric field provided by the total 
charge Q Nq=  is present. Thus we have a ``steady mixture’’ of the tantamount magnetic and electric fields. 
Both proved to be of the same-rate evolution at a distance (despite the case of a charge-free Coulomb-wise field). 
A pure magnetic monopole field (6) is also plausible, for instance, in the case when one half of all rotators 
consist of positively charged ones, whereas others are negatively charged. Furthermore, positive and negative 
rotators are located on the sphere in a chess-board manner (a staggered order) and twirl in opposite directions 
respectively. Thus we would have a negligible electric field of high degree multipole. 
6. Conclusion 
The very idea of a kinematic system having the spherical symmetry was presented to the local Siberian 
Conference (Leus, 1998, pp. 134-148). There was adduced a version of the spherical system of magnetic rotators 
only, without any mathematical substantiation. As it has been seen in the above text, the magneto-kinematical 
effect gives an electro-kinematical field whereas the electro-kinematical effect gives a magneto-kinematical field. 
The magneto-electric systems examined in the present paper restore a “genetic’’ equality between electricity and 
magnetism. This equality stems from the fundamental symmetry between Rowland-Eihenvald effect ( ۰ =1 cଶ ൗ ܞ × ۳ ) on the one hand and Zajev-Dokuchajev effect (۳ = ۰ ×  on the other, provided that fields of (ܞ
kinematic origin may actually exist. How could this statement be questioned? “Equation 0div =  B  (4.19) is 
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one of the fundamental laws of electromagnetism, on the same footing as Coulomb’s law. There have been no 
observed violations of this law that the divergence of the magnetic field B  is everywhere zero; no free 
magnetic`charges’ have yet been discovered. The development of the theory of electromagnetism depends on this 
last negative observation. Since electromagnetic theory always gives the right answer we have very strong 
indirect evidence for the general validity of the Equation (4.19)” (Grant & Phillips, 1998, pp.126-127). The 
properties of the examined spherical systems are not in an irreconcilable contradiction with this “one of the 
fundamental laws of electromagnetism”. A point of the conciliation is abiding in the fact that despite non-zero 
divergence of the magneto-kinematical field, provided by the spherical system of electric rotators, no free 
magnetic charges appeared out.  
Some important experimentation has yet to come. Although theoretically speaking linear equations meet the 
superposition principle, I should like to buck some physicists up for a scientific checking: the validity of the 
superposition for kinematical fields ought to be proven experimentally. For this purpose it isn’t necessary to 
build a spherical system including thousands of elements. Two rotators only would be enough to verify this 
because the superposition is a transitive property. Should such an appropriate test prove to be positive, the 
spherical magneto-electric system will be something that is theoretically possible but has not been made yet. 
Nonetheless, who could warrant us that the Nature did not make this at the sub-microscopic level? “It is doubt 
that compels us into investigation, and by investigating that we recognize the truth” /P. Abelard (1079 -- 1142)/. 
This is an endless upward spiral of cognition.  
As it has been underlined in the section 1, “electricity of kinematical origin does exist in the laboratory’s 
non-rotating frame”. Nonetheless, it seems fair at this point to raise a question about a specific attribute of each 
rotatory movement, namely acceleration. Let us refer to an estimate made by a Russian physicist and Nobel prize 
winner I.E. Tamm. “The impact of acceleration, i.e. force of inertia, on electrons in an accelerated media is 
equivalent to presence of some effective electric field with strength ۳ᇱ = − ݉݁ ൬߲߲ݐܝ +  . ൰ܝ(સܝ)
For example, consider a disk of radius ܽ rotating with an angular velocity ߱. The maximal value of effective 
electric strength would be ܧᇱ = ܽ߱ଶ(݉/݁). Taking ܽ = 5ܿ݉, ߱ = ݁/݉ and  ܿ݁ݏ/ߨ100 = 1.9 ∙ 10ିଵଽ, we 
get ܧᇱ ≈ 3 ∙ 10ିଵ଴ volt. Needless to say, that is quite trifling” (Tamm, pp. 538-539). In addition let us refer to 
the above cited book by Panofsky and Phillips: “It should be emphasized, however, that within the framework of 
special relativity our earlier considerations do permit us to describe all fields in all Lorentz frames, whether the 
sources are accelerated or not” (Panofsky & Phillips, 1975, p. 339). 
Appendix  
This appendix contains the detailed proof of the geometrical statement.  
In the spherical coordinates of the upper (first) rotator (Figure 5) we have the above defined angle ∝, and 
angle ߚ  which is complementary to the ߴ (Figure 8). 
Let 1u  be a unit vector for the direction of vector 1E  and OPu  be a unit vector for the direction of the radial 
ray OP . The Cartesian coordinates (ݔ, of the vector 1u (ݕ  are cos ∝ , ±sin ∝ (Figure 8). The up sign relates 
to the front side of spherical system whereas the down sign relates to the rear one according to the Bogach’s 
formula (1) for ܧణ. The Cartesian coordinates of the vector uOP  are cos ,ߛ  sin  Then using the formulae (3) .ߛ
for the inner product 1u uOP⋅  we can write: ܝଵ ∙ ை௉ܝ = cos(۳ଵ, (۾۽ = (cos ∝ cos ߛ ± sin ∝ sin (ߛ = sin ߴ cos ߛ ± 2 cos ߴ sin 1√ߛ + 3cosଶߴ = ݂√1 + 3cosଶ(7)     . ߴ 

Now let us put attention on the numerator, denoted by ݂. Substitution the angle ϑ  for the complementary angle 
β  (Figure 8) in this expression gives ݂ = sin ߴ cos ߛ ± 2 cos ߴ sin ߛ = sin ߚ cos ߛ ∓ 2 cos ߚ sin  .ߛ
Using the formulae of elementary trigonometry provides us the following:  sin ߛ = ℎݎ  , sin ߚ = ܴܾ sin ߛ = ܴℎܾݎ  , cos ߛ = ܴଶ + ଶݎ − ܾଶ2ܴݎ  , cos ߚ = ܾଶ + ଶݎ − ܴଶ2ܾݎ  . 
Substituting the above expressions in ݂, it is obtained: 
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(ݎ)݂ = ܴℎܾݎ ∙ ܴଶ + ଶݎ − ܾଶ2ܴݎ  ± 2 ∙ ܴଶ − ଶݎ − ܾଶ2ܾݎ ∙ ℎݎ = ℎ2ܾݎଶ (ܴଶ + ଶݎ − ܾଶ ∓ 2ܴଶ ± 2ܾଶ  ±  .(ଶݎ2
Now we separate two cases: 

2 2 2 2 2 2 2 2 2
1( ) 2 2 2 3= + − − + + = + −g r R r b R b r r b R ; 

2 2 2 2 2 2 2 2 2
2 ( ) 2 2 2 3 3= + − + − − = − −g r R r b R b r R b r . 

Let us examine the behaviour of these functions in the ranges ܴ − ܾ ≤ ݎ ≤ √ܴଶ − ܾଶ and √ܴଶ − ܾଶ  ≤ ݎ ≤ܴ + ܾ (front part of the ܾ-sphere and rear part of the ܾ-sphere, respectively) of the variable ݎ, which can vary 
between limits: ܴ − ܾ ≤ ݎ ≤ ܴ + ܾ. We have 

ଵ݃(ݎ) ≥ 3(ܴ − ܾ)ଶ + ܾଶ − ܴଶ = 3ܴଶ − 6ܴܾ + 3ܾଶ + ܾଶ − ܴଶ = 2(ܴଶ −  3ܴܾ + 2ܾଶ) = 2(ܴ − ܾ)(ܴ − 2ܾ). 
And similarly  ݃ଶ(ݎ) ≥ 3ܴଶ − 3ܾଶ − (ܴ + ܾ)ଶ = (ܴ + ܾ)(3ܴ − 3ܾ − ܴ − ܾ) = (ܴ + ܾ)(2ܴ − 4ܾ) = 2(ܴ + ܾ)(ܴ − 2ܾ) 
It is evident that ଵ݃(ݎ) > 0 and ݃ଶ(ݎ) > 0, if ܴ > 2ܾ. So, in the space at any point ܲ, where the condition ܴ > 2ܾ is fulfilled, the function ݂(ݎ) is positive for all values of the variable ݎ, when the positioning angle 
δ varies between 0  and π : ܴ − ܾ ≤ ݎ ≤ ܴ + ܾ. Therefore by virtue of (7), the value cos(۳ଵ,  is (۾۽
positive, i.e. the orthogonal projection of the vector ۳ଵ at the radial ray ܱܲ does not change its sign. The 
geometrical statement is proven.  
The corollary. 
It is obvious that inside the spherical system, where the total surface of the ܾ-sphere is a “rear side”, the function 

2 2 2
2 ( ) 3 3g r R b r= − −  only is valid. Let us examine the behaviour of the function 2 ( )g r  when ܴ < ܾ. For ݎ = ܾ we have ݃ଶ(ݎ) = 3ܴଶ − 4ܾଶ < 0. The roots ݎଵ,ଶ = ±ඥ3(ܴଶ − ܾଶ) of the equation 2 ( ) 0g r =  both 

are a conjugate complex number. Hence the function 2 ( )g r is negative for all ݎ   from the segment 
[ , ]b R b R− + . Consequently, the radial direction of the induced electric field inside the ܾ-sphere is in 
opposition to the one outside the sphere of radius 2b . Between these two boundaries (ܾ < ܴ < 2ܾ) a transient 
zone is disposed.  
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