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Abstract

The Voronoi tessellation is the partition of space for a given seeds pattern and the result of the partition depends
completely on the type of given pattern “random”, Poisson-Voronoi tessellations (PVT), or “non-random”, Non
Poisson-Voronoi tessellations. In this note we shall consider properties of Voronoi tessellations with centers gener-
ated by Sobol quasi random sequences which produce a more ordered disposition of the centers with respect to the
PVT case. A probability density function for volumes of these Sobol Voronoi tessellations (SVT) will be proposed
and compared with results of numerical simulations. An application will be presented concerning the local struc-
ture of gas (CO») in the liquid-gas coexistence phase. Furthermore a probability distribution will be computed for
the length of chords resulting from the intersections of random lines with a three-dimensional SVT. The agreement
of the analytical formula with the results from a computer simulation will be also investigated. Finally a new type
of Voronoi tessellation based on adjustable positions of seeds has been introduced which generalizes both PVT and
SVT cases.

Keywords: 07.05.Tp, Computer modeling and simulation, 89.75.Da, Scaling phenomena in complex systems
1. Introduction

Three-dimensional Voronoi tessellations produce a random partition of the space which have found applications
ranging from geology, Blower, Keating, Mader, and Phillips (2002) and molecular biology (Poupon, 2004; Dupuis
et al., 2011) to numerical computing (for a review see Du & Wang, 2005 and references therein), and chemistry
(Jedlovszky, Medvedev, & Mezei, 2004; Idrissi, Vyalov, Kiselev, Fedorov, & Jedlovszky, 2011).

In most studies Voronoi tessellations have been considered in which the positions of the centers are randomly
distributed, giving rise to the so called Poisson-Voronoi tessellations (PVT) (Okabe, Boots, Sugihara, & Chiu,
2000) even though examples of non Poissonian Voronoi Tessellation can be found in the literature (Heinrich &
Schiile, 1995; Chiu & Quine, 2011; Gonzalez & Einstein, 2011). Non uniform distributions of the centers can be
of interest to model regular physical configurations; we shall consider here the properties of Voronoi tessellations
whose center are generated by Sobol quasi random sequences (Sobol, 1967; Bratley & Fox, 1988).

A probability density function (PDF) for volumes of these Sobol Voronoi tessellations (SVT) will be proposed and
compared with the results of numerical simulations.

In section 4 SVT and PVT will be used in an application concerning the local structure of gas (CO,) in the liquid-
gas coexistence phase.

In addition, we shall consider the relations between these three-dimensional structures and their lower dimensional
sections; in particular we shall study chord length distributions resulting from the random intersection of SVT with
straight lines. In case of PVT probability density functions of chords can be derived rigorously (Muche & Stoyan,
1992; Muche, 2010; ), see also Okabe, Boots, Sugihara, and Chiu (2000); here we shall present an empirical
method to calculate a PDF of chord lengths in the case of SVT.

Finally Voronoi tessellations derived by perturbating the positions of points lying on a regular lattice will be
considered.
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2. Probability Density Functions

In the case of one-dimensional PVT, with average linear density A, it has been proved (Kiang, 1966) that the
distribution of the lengths of the segments has PDF

p(l) = 4% exp (-241). 1)

At the present time there are no analytical formulae for the area’s and volume’s distribution and we limited ourself
to explore the available conjectures. Numerical experiments have shown that for PVT an approximate solution can
be obtained via a 3 parameters generalized Gamma distribution, that in case of a variable x is
abi xc~ et

r(s)
see (Hinde & Miles, 1980; Tanemura, 2003; Khodabin & Ahmadabadi, 2010; Lazar, Mason, MacPherson, &
Srolovitz, 2013). The main moments of G(x; a, b, ¢) are:

G(x;a,b,c) = )

3)

o’ = , @)

the skewness 7y is

) (&)

and the kurtosis k

(6)

with

Usually, instead of v the reduced variable x = v/(v) is used (Tanemura, 2005): fitting procedures carried out in
(Tanemura, 2005) give best parameters values a = 1.16788, b = 4.04039, ¢ = 4.79803.

In the next section we shall adapt the Gamma three-parameter distribution to fit reduced volumes of Voronoi
cells generated with Sobol sequence. The results will be compared with those obtained by a simpler PDF, a one

parameter gamma
C

p(x;c) = r(c)xC‘l exp(—cx), )
used by Kiang in his seminal work on Voronoi tessellations (Kiang, 1966), whose moments are
1 1 2+c¢
2
=, =2—, k=3 8
o= Y=2F - @®)

It has shown that good approximations for volume distributions of PVT cells can be obtained by setting ¢ = 5
(Ferenc & Néda, 2007). A detailed comparison between p(x; c) and G(x;a, b, ¢) can be found in (Ferenc & Néda,
2007), see also (Ferraro & Zaninetti, 2012).
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3. Volumes Statistics in SVT

Sobol sequences, like all quasi-random sequences fill the space more uniformly than uncorrelated random points
and this property has been extensively used in Monte Carlo methods such as integration or simulation of transport
processes (Morokoff & Caflisch, 1994). Indeed the uniformity of quasi-random sequences leads to integration
errors smaller than in case of random sequences.

Evidence of uniformity of a Sobol sequence compared with a random one is presented in Figures 1 (155 random
seeds) and 2 (140 quasi-random seeds) that show respectively a PVT and SVT. Here for the generation of points
of the Sobol sequence we have used the procedure outlined in (Press, Teukolsky, Vetterling, and Flannery, 1992;
Antonov & Saleev, 1979), for clarity’s sake the examples are two-dimensional and just 140 centers have been used.
It is apparent from the Figures that SVT exhibits a narrower distribution of areas: indeed variances are 0.27 and
0.061 for PVT and SVT respectively.

Figure 1. An example of PVT in 2D

A measure of uniformity of a quasi-random sequence is the discrepancy, which is the error made when representing
the volume of subsets of the unit cube by the fraction of points in the subsets: the lower of the discrepancy the
higher is the uniformity. There are different ways to define discrepancy see (Morokoff & Caflisch, 1994) and
references therein, and it can be shown that the discrepancy on a d dimensional cube is roughly (logn)*n~' for a
large number of points n, whereas random sequences have discrepancy of size (loglogn)!/?n~'.

A simple measure of uniformity can be also defined as follows: for a Sobol tessellation with n seeds of an unit
area the minimum distance d,;, between any two seeds is first computed and next d,;, is divided by d; = % the
distance between two seeds in the case of a regular lattice of unit area. Thus the ratio ‘i’,’—’l‘:” should be larger for a
quasi-random sequence of seeds compared with a random one. When n=1000 the ratio dd’—’L’ is 0.093 in the case of
2D Sobol seeds and 0.0056 in the case of random (Poissonian) seeds.

Thus, Sobol sequences present a repulsion effect that can be also found in other quasi-random sequences such as,
for example, those generated by the eigenvalues of complex random matrices, see (Le Caer & Ho, 1990).
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The eigenvalues seeds can be found starting from a random N X N complex matrix. The matrix elements are given
by x + iy where x and y are pseudo random real numbers taken from a normal ( Gaussian ) distribution with mean
zero and standard deviation 1/ V2. Once obtained the complex elements we diagonalize the complex matrix using
the subroutine CG from the EISPACK library. The points seeds have the x and y coordinates corresponding to the
real and imaginary parts of the complex eigenvalues and an example which has variance 0.06 is reported in Figure
3.

Next we have generated a three-dimensional SVT with 10* cells: the histogram of their volumes has been fitted with
the generalized gamma G(x; a, b, ¢), as given by (2), and the one parameter gamma p(x; c¢), see (7), respectively.

The statistical parameters of the two fits and the sample’s parameters are reported in Table 1, were the first line
shows numerical values of the parameters for generalized three-parameter and the one-parameter gamma, respec-
tively, obtained from the fit of empirical data, the next lines report values of mean, variance, skewness and the
kurtosis for the two distributions and the sample, here the number of cells is 10* and the number of bins is 40.

Table 1. Parameters for generalized three-parameter and the one-parameter gamma, respectively, obtained from
the fit of normalized volumes

Moment Generalized gamma One parameter gamma  Sample
a=23317,b =2.86816, c = 7.32528 ¢ =16.32099
(xsvr) 0.99993 1 1
TEyr 0.0613809 0.06127 0.06127
YSVT 0.191594 0.49505 0.20973
ksvr 2.94336 3.36762 3.15243

The goodness of the fit has been assessed by first computing the PDF of both G and p and next applying the
Kolmogorov-Smirnov (K-S) test (Kolmogoroff, 1941; Smirnov, 1948; Massey, 1951).

frequencies
2000 3000

1000
L]
L

data

Figure 4. Histogram (step-diagram) of the SVT reduced volume distribution

The three- parameter PDF G fits well the simulated volumes: the maximum distance between the empirical and
computed distributions functions d,,,, = 0.01 and the result of the K-S test, implemented with the FORTRAN sub-
routine KSONE (Press, Teukolsky, Vetterling, and Flannery, 1992), gives Pgs = 0.21. Note also that its moments
appear to be close with those derived from the empirical distribution.

As concerns p(x:c) the results of the K-S test are worse, dyay = 0.024, Pgs = 1.9107°. Figure 4 shows the
histogram of volumes generated by the simulation, the number of Sobol centers is 10*, the number of division
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n=40, and the graph of the generalized gamma used to fit the data with parameter values given by Table (1). In
Figure 5 we report the comparison between the empirical distribution and the distribution function (DF) of G with
parameters as in Table 1. It can be interesting to compare values of the moments obtained here with those derived
for PVT, by using estimate of a, b, ¢ given in (Tanemura, 2005), namely

Thyr = 01787603, ypyr =0.7766972,  kpyr = 3.849375.

Volumes distribution of SVT shows a smaller variance, as result of the fact the centers are distributed in a more
regular fashion than in case of PVT; furthermore the PDF is more symmetric for SVT (ysyr < ypyr); finally kgyr
is very close to 3, the value of the Gaussian kurtosis.

A comparison between the generalized gamma PDFs for the two cases is shown in Figure 6.

0.1
L]

P (X<;<1)

1w

0 05 1 1.5 2 2.5 3

Figure 6. Plot of reduced gamma PDFs for the PVT (full line) and SVT case (broken line)
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3.1 An application

In this section it has been shown that the main differences between distributions of volumes in case of SVT vs
PVT are that the former have a smaller variance and are more symmetric and it has been argued that, clearly,
these differences are related to the more regular distributions of centers in case of SVTs. This suggests a possible
application in understanding different PDF for volumes obtained in simulations of local structure of gases, in the
liquid-gas phase. In (Idrissi, Vyalov, Damay, Kiselev, Puhovski, & Jedlovszky, 2010) CO, was considered and
simulations were carried out to determine the volumes available to each molecule that were considered as the
center of a Voronoi tessellation. From the simulation the empirical PDF of volumes P(V) can be computed and
results show an increase of mean volume (V) and standard deviation oy as temperature rises: the former effect
is due to the thermal expansion of the system (Idrissi, Vyalov, Damay, Kiselev, Puhovski, & Jedlovszky, 2010),
whereas the increase of oy points to more disordered distribution of the centers at higher temperatures and to
increasing volume fluctuations. To compare our results with the data in (Idrissi, Vyalov, Damay, Kiselev, Puhovski,
& Jedlovszky, 2010), see Table 2, we have computed the standard deviation for the reduced volumes x = V/(V),

Table 2. Mean values and standard deviations of the Voronoi polyhedra,V, and c of the Kiang function

T/K 250 270 285 298 303 306 313
(VY/A3 69.7+103 77.5+13.8 87.1+19.4 1053+31.1 1144+382 156.8+68.8 156.8+65.1
c 45.79 31.53 20.15 11.46 8.96 5.19 5.8

namely o = oy/(V), and compared them with the standard deviations ogyr and o pyr of the PDFs derived in . As
an example when 7' = 250 K, (V) = 69.7A3, o = 10.3/69.7 = 0.147, 0> = 0.0218 and ¢ = 1/0.0218 = 45.79. We
briefly recall that the data of the previous Table are theoretical values computed with the Voronoi polyhedra (VP)
analysis based on numerical codes developed by (Jedlovszky, 1999, 2000; Tokita, Hirabayashi, Azuma, & Dotera,
2004).

In the temperature range from 7 = 250 to T = 303 ¢ increases from 0.15 to 0.33 and ogy7 = 0.25 is in the middle
of this range. At higher temperatures, T = 303 and T = 313 one obtains oo = 0.43 and o = 0.41, respectively,
matching closely the standard deviation derived for for PVT, namely o py7 = 0.43. More importantly, the shape of
the PDF, which is quite symmetric at the lower end of the T range, increasingly deviates symmetry as T increases
and develops an exponentially decaying tail at high volume values (Idrissi, Vyalov, Damay, Kiselev, Puhovski,
& Jedlovszky, 2010). This is also what happens in the transition from SVT to PVT, see Figure 6. These results
can be explained as follows: as T increases positions of molecules become more random and a transition takes
place from a PDF relatively narrow and symmetric (like in the SVT case) to a more asymmetric PDF with larger
variance corresponding to a PVT. The relation between the distributions of occupied volumes and the temperature
T can be made clearer by considering the parameter c of the Kiang distribution (7). It is clear that small values of ¢
characterize distributions with relatively large variance and skweness, whereas as ¢ increase distributions become
narrower and more simmetric. The parameter ¢ of the Kiang function can be parameterised as function of the
temperature as follows

c=CT" , 9
where C and a; can be found from the data of Table 2. A numerical procedure gives C; = 5.7 10% and a; = —10.

4. Chords Length Distribution

In many experimental conditions it is not possible to directly observe the three-dimensional cells forming a tes-
sellation, just their linear sections: thus it is of interest to study the relationships between the geometric properties
of three-dimensional structures and their chords (Ruan, Litt, & Krieger, 1988; Okabe, Boots, Sugihara, and Chiu,
2000; Stoyan, Wagner, Hermann, & Elsner, 2011).

One can distinguish three main ways to generate chords (Coleman, 1969), (Kellerer, 1984): isotropic uniform
randomness results when the body is exposed to an uniform isotropic flow of infinite straight lines; weighted
randomness occurs when a uniformly distributed random point is chosen and is traversed by a straight line with
uniform random direction; two-point randomness is obtained when a straight line traverses two random points that
are independently and uniformly distributed. The first case, which will be considered here since more relevant for
practical applications (Kellerer, 1984); relations among PDFs of chords generated by different methods can be
found in (Kellerer, 1984).
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In order to obtain formulas for the distributions of the chords generated by the intersections of lines with SVTs
some simplifications are needed: here the polyhedrons forming the cells will be approximated by spheres and the
one-parameter distribution p as given by Equation(7), will be used to fit the cells volumes distribution. With these
assumptions a formula for the PDF of chords length can been obtained, a simple iterative procedure will then be
used to adapt this distribution to the simulated data, thus correcting the errors resulting from the approximations.
Let p, be the probability density function for the reduced cell volumes, then the PDF p, for the lengths of the
diameters is given by

1
) = gpx(gnﬁ)yz : (10)

and the probability density function g of chords length / is

2
)= — dy 11
g <y2>fz py(y)dy 1D

see, for instance, (Ruan, Litt, & Krieger, 1988), (Watson, 1971). In the present case then, with PDF of volumes
given by the Kiang function, Equation (7), with ¢ = 16, the distribution of diameters is

1 1671 . 8 4
- -—*. 12
»y) 2 651(16)° CXP( 3y) (12)

The use of the generalized gamma function, Equation(2), for the PDF in volumes means conversely that the inte-
grals which follow can be done only in a numerical way. The probability density gsyr can be found by making use
of Equation (11) with p, given by (12), the result is

9
a 8
gsvr(D) = = exp (—gnP)me"Pkﬂ : (13)
4 k=0

where the coefficients are large numbers, whose values are reported in the Appendix. The previous formula and
the following ones are not an exact analytical result but results from the approximation of the volume of the
Voronoi’s polyhedrons by spheres. In order to check the validity of this PDF we inserted in a box 50000 seeds
which produce a network of irregular faces belonging to the Voronoi’s polyhedra. We selected 120 random lines
which will intercept the network of the irregular faces: the chord’s length is evaluated as the distance between a
face and the following one on the considered line. A typical run processes a total number of ~ 3200 chords. The
corresponding histogram is shown in Figure 7: note that here the results has been rescaled so that the average value
of chord length is equal to 1.

It is apparent that the results of the simulations do not agree with the PDF given by Equation (13): it is enough
to note that ggy7(0) = 0, is in contrast with the histogram of Figure 7. In order to overcome this problem a new
variable z has been defined by a shift of I: z = [ —a, so that g sy7(z) = gsvr(z+a). The shift parameter a should not
be confused with the parameter of the generalized gamma PDF (compare Equation (2)). An explanation for this
shift is given by the fact that the length of the chord which touches only in one point the sphere is zero conversely
a chord which lies on a irregular face of the Voronoi’s polyhedron has a finite length. This means that we have
more short lengths in the simulation of the chords with the real polyhedrons in respect to the length’s of theoretical
intersections with the spheres: i.e. the PDF of having short chords is finite rather than zero.

Next, to obtain a reduced variable, a scale change has been applied resulting in u = bz . The scale parameter b used
here is different from the parameter of the generalized gamma PDF (compare Equation (2)).

115



www.ccsenet.org/apr

Applied Physics Research

Vol. 7, No. 6; 2015

Table 3. Moments of the probability density function gssvr, Sobol seeds

Parameter value
Mean 1
Variance  0.308
Skewness  0.0888
Kurtosis 2.164

frequencies
100

b5 2

data

Figure 7. Histogram (step-diagram) for SVT chord length with average value 1

In conclusion, following translation and scale change, the final PDF is now

grsvr(u;a,b)

pesvr (5 )
— —+a
bgsvr b

Cao 8 /u 3\ 2 (U 3k+1
b—alexp(—gﬂ(z+a))kz_(;bkﬂ (E +Cl) ,

where C is a normalizing constant, which has value 1.4717.

(14)

Numerical values of a and b have been obtained by an interactive procedure that at each step computes the DF

F(u;a,b) = f grsvr(z;a,b)dz
0

5)

the agreement between the calculated and simulated distribution function is then been verified by the K-S test.
The procedure is halted when d,,,,,, the maximum distance between the distribution functions, reaches a minimum
(that is when the significance level Pksis maximum) and the corresponding pair a, b is selected; Table 4 reports the
adopted values. Calculated and empirical DFs of chords length are shown in Figure 8, the K-S test gives d,u,, =
0.0165, Pgs=0.251. The moments of gssyrare presented in Table 3 with parameters as in Table 4.

The results can also be presented as a PDF, see Figure 9, parameters as in Table 4; the reduced y? is 1.09.
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Figure 9. Histogram (step-diagram) for SVT chord length with average value 1 and PDF g;gyr ( line)

The shifted PDF, g vy, for SVT chords can be reported as a Taylor expansion around x=0 , when the average
value is one

grsvr(x;0.7,3.27) = 0.411 + 0.179 x — 0.444 107 »*
—0.243107* x> = 0.958 1073 x* — 0.285 1073 x°. (16)
It is clear that at x = O this PDF takes a finite value.
4.1 The PVT Chord

Chords length distribution in case of PVT can be obtained with the same method, by adopting now as the volumes
PDF Equation (7) with ¢ = 5, which is known to give a good fit of simulated data (Ferenc & Néda, 2007). The
resulting integral for the chord as given by eqn.(11) is

125 1137.[14/352/3\3/6 75 110ﬂ11/352/3\3/6
+
304247 2/3) (er#)"" 49281 2/3) (er*)""
135 'n%3523 /6 81*7°35%3 V6
N \5/6
2464T (2/3) (e””) 616T(2/3) (e’”’)
243 In*3523 /6
1540T (2/3) (er¢)”"

grvr() =

a7

We now apply translation and scale change

C u
grpvr(u;a,b) = 58PvT (E + a) , (18)

and Table4 reports the parameters adopted. Figure 10 reports a comparison of the previous result, integration of
PDF (18)and parameters as in Table 4, as a dashed line with the tabulated result as deduced from Table 5.7.4 in
(Okabe, Boots, Sugihara, and Chiu, 2000) when the average value of both PDFs is one. Table 5 reports the two
numerical sequences.

Calculated and empirical DFs of chords length in the PVT case are shown in Figure 11 with parameters as in Table
4; the K-S test gives dyuq = 0.0362.

For comparison purposes a plot of PDF g/(u; a, b), which represents the SVT case with parameters as in Table 4,
is shown in Figure 12 together with the numerical PDF for PVT derived from the numerical DF reported in Table
5.7.4 of (Okabe, Boots, Sugihara, and Chiu, 2000); in both cases the mean chord length is equal to 1.
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[ 05 1 1.6 2 25 3
X

Figure 10. The full line represents the tabulated chord DF in the case of PVT, the dashed line is our chord DF

P (X<x)

Figure 11. Comparison between data (empty circles) and theoretical DF for g¢pyr (continuous line) of chords
length distribution
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Table 4. Parameters which characterize the chord distribution according to the chosen seed

type of seed a b C
Poissonian seeds 0.4 1944413550 0.8937531655
Sobol seeds 0.7 3.271926163  1.471732407

ACG seeds,s =0.64 0.7 3.271926163  1.471732407

Table 5. Tabulated chord length DF for PVT case (second column) and our DF (third column)

x PVT DF our DF

0.3 0.1320 0.1091
0.6 02760  0.2518
09 04336 0.4298
1.2 0.6008  0.6306
1.5 0.7602  0.8139
1.8 0.8844  0.9331
2.1 09579 0.9851
24 09891  0.9986
27 09981  0.9985
3.0 09998  0.9983

The shifted PDF, g pyr, for PVT chords is reported as a Taylor expansion around x = 0, when the average value
is one

g7.pvr(x;0.563,2.452) = 0.386 + 0.279 x — 0.00257 x*
—0.00766 x> — 0.0151 x* — 0.02 x°. (19)

5. Adjustable Seeds

An occasional reader may question if a scenario of gradual transition from PVT to SVT can be outlined. In order
to have more flexible seeds we introduce the adjustable Cartesian grid (ACG) which can be computed both in 2D
and 3D.

The algorithm is now outlined:

1). The process starts inserting the seeds on a 2D/3D regular Cartesian grid with equal distance § between one
point and the following one

2). A random radius is generated according to the half Gaussian ,HN(x), which is defined in the interval [0, co]

2 X2
HN(x;s) = W exp(—ﬁ) O0<x<oo . (20)
The main moments of HN(x; s) are:
s V2

Xx) = s 21
(x) NE (21

and )
I it 22)

T

3). A random direction is chosen in 2D/3D and the two/three Cartesian coordinates of the generated radius are
evaluated. These two/three small Cartesian components are added to the regular 2D/3D grid which represent
the seeds. In order to have small corrections we express s in § units. The parameter s is a good “disorder
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0.4
L]

a(l)

Figure 12. The full line represents the PDF of chords length in case of PVT, the dashed line is the graph of grsyr

parameter” for the generated configurations. At s = O we will have the seeds disposed on a perfect lattice
with all the volumes of the irregular polyhedra equal, increasing s we will reach before c=16 in the PDF of
volumes (SVD) and subsequently c=5 (PVT).

Figure 13 reports an example of 2D tessellation from ACG which areas have variance 0.047, the same value of the
2D sobol seeds.

5.1 Applications of the Adjustable Seeds

We present here two applications of the adjustable seeds. These adjustable 3D seeds can be calibrated in order to
have ¢ = 16 for the Kiang distribution in volumes, see PDF (7). To each value of s corresponds one value of ¢ that
can be obtained from the relation ¢ = 1/02. For instance when s = 0.316, ¢ = 32.82 and at when s = 1, ¢ = 15.87;
in particular ¢ = 16 is obtained for s = 0.64. The first application refers again to the local structure of gas (CO) in
the liquid-gas coexistence phase (Idrissi, Vyalov, Damay, Kiselev, Puhovski, & Jedlovszky, 2010). The parameter
¢ of the Kiang function for the PDF in volumes can be parameterised as a function of the parameter s as follows

c=Crs™ (23)

where C, and a, can be found from a simulation. A numerical procedure gives C, = 24.39 and a, = —0.44.
On equalizing the two equations (9) and (23) we obtain the following relationships between temperature, 7', and
regulating parameter s

Y

Cy 1
T = (Z2)a s 24
(Cl) s (24)

Ci L«
— o Tao | 25

The previous relationship allows to find the theoretical standard deviation of the Voronoi polyhedra volumes as
function of the temperature. We first fix the temperature as given by the values in Table 2 and the relationship
(25) allows to find s. Given s we obtain ¢ from eqn.(23) and by the fact that for the Kiang’s function 0> = %
we easily obtain o for a for the normalized variable. The standard deviation for the non-normalized variable is
oy = (V)o. Table 6 reports the mean values and standard deviations of the Voronoi polyhedra, V, as computed in
(Idrissi, Vyalov, Damay, Kiselev, Puhovski, & Jedlovszky, 2010) (first line) and the procedure for the calculation
of standard deviations presented here (second line). In both lines V are the values as given in (Idrissi, Vyalov,
Damay, Kiselev, Puhovski, & Jedlovszky, 2010) and are presented here to make the comparison easier. The third
and fourth line present the values of ¢ of the Kiang function and the regulating parameter s of the ACG seeds.
Figure 14 reports the chemical standard deviation as given by Chemistry and the theoretical standard deviation
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Figure 13. An example of 2D tessellation generated by 127 ACG seeds

as given by ACG as function of the temperature; it is clear that there is a good agreement between the calculated
oy and the experimental standard deviation. Next we consider the chords distribution of ACG tesselations, and

Table 6. Mean values (first line), standard deviations (second line), ¢ of the Kiang function (third line) and the
regulating parameter s of the ACG seeds (fourth line)

T/K 250 270 285 298 303 306 313
(V)/A3 Idrissietal. 69.7+10.3  77.5+13.8 87.1+ 194 105.3+ 31.1 114.4+ 38.2 156.8+ 68.8  156.8+ 65.1
(V)/A? 69.7+9.19 77.5+15.032 87.1 +22.142 105.3+33.463 114.4+39.51 156.8+56.89 156.8+ 63.7
c 57.4 26.5 15.4 9.9 8.38 75 6
S 0.143 0.823 2.808 7.729 11.275 14.101 23.56

to this end we adapt the PDF of Sobol’s chords as given by (15). Calculated and empirical distribution functions
of chords length for ACG with parameters as in Table 4 are shown in Figure 15; the K-S test gives d,;,x = 0.028,
Pgs =0.0051.

6. Conclusion

In this paper new types of three-dimensional Voronoi tessellations have been presented whose centers are not
sampled from an uniform distribution, as in Poisson Voronoi (PVT) case, but rather are derived from more regular
sequences. First Sobol-Voronoi Tesselations (SVT) have been considered in which cells forming the partition
have as centers points generated by a Sobol quasi-random sequence. To make the notion of regularity of seeds
configurations more precise a measure of uniformity has been presented. In analogy with the case of PVT we have
used a generalized gamma distribution, denoted with Ggyr, to fit the volumes obtained by numerical simulations.
One should expect that the more regular configuration of centers in the SVT is reflected in the distributions of
cell volumes and this is indeed the case: comparisons between the PDFs show that Ggy7 have smaller variance
and are more symmetric than the distribution Gpy7 of volumes in respect to PVT. It should be noted that volumes
distributions of PVT cells can be fitted satisfactorily by different types of gamma distributions, as mentioned in
Section 2; in contrast for volumes of SVT only the generalized three-parameters gamma provides a good fit.
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Figure 14. Standard deviation as given by Chemistry (empty stars) and theoretical standard deviation as given by
variables volumes in ACG (full points) as function of the temperature.
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Figure 15. Data (empty circles) and theoretical DF for ACG seeds. The theoretical DF is the integral of PDF
(gr.svr) (continuous line).

122



www.ccsenet.org/apr Applied Physics Research Vol. 7, No. 6; 2015

As concerns applications, SVT may be relevant in modelling partitions of systems that follow a more regular
distribution than the usual Poisson distribution and, what is more interesting, transitions from ordered to disordered
states of the system must be mirrored by a corresponding change from SVT to PVT. An example has been presented
in which volumes occupied by molecules of CO, in liquid-gas phases undergo a transformation from regular to
more random distributions as the temperature increases. Transitions from regular to disordered partitions of space
can be cast in a more general setting by considering the case in which center are first situated on the nodes of
a regular grid and then positions are perturbed with a gaussian noise regulated by a parameter disorder s, thus
creating an Adjustable Cartesian Grid (ACG). By increasing s one can reach first SVT distributions and next
PVT. In this case a transition from ordered to disordered states can be parametrized by s. Considering again to
local structure of CO, a relation has been derived between s and T, from which the standard deviation has been
computed and next compared with the experimental one, showing a good agreement. Finally statistics of chords
resulting from intersections of line with elements of PVT, SVT and ACG have also been investigated. The interest
of such type of statistics resides in the fact that in many experimental conditions only chords of three-dimensional
cells can be determined. Results show a good agreement between the analytical formula, obtained with a semi-
empirical procedure and data obtained from a simulation, despite the approximations that have been used, namely
considering cells to be a sphere and using an one-parameter gamma distribution to fit cells volumes, from which
chords distributions have been derived.

Appendix

Numerical values of coefficients in Equation (13).

ap = 1238233, a; = 63997774118278000T (2/3).

by = 9161961861677625, b, = 24431898297807000, b, = 32575864397076000,

b3 = 28956323908512000, b4 = 19304215939008000, b5 = 10295581834137600,

- be = 4575814148505600, b7 = 1743167294668800, bs = 581055764889600,
by = 172164671078400, b9 = 45910578954240, by, = 11129837322240,
bip = 2473297182720, b3 = 507343011840, b4 = 96636764160
b5 = 17179869184.
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