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Abstract 
Problem- The mystery of origin Earth's magnetic field is connected with the solution of the problem of 
convection in the mantle and in the outer liquid core. However, the mathematical analysis of the stability 
conditions of convection in the core and the mantle of the Earth still insufficiently developed. Even in the 
classical formulation of the problem the main roots of the dispersion equation has not been studied. Purpose- It 
should be more fully and rigorously consider the problem of convection in rotational thermodynamically 
inhomogeneous viscous liquid. In this task, you must obtain a general dispersion equation and perform a 
mathematical analysis of the roots of this equation. You also need find the shape of convective cells in the 
bowels of the Earth. Approach- We start from the Navier-Stokes equations for thermodynamically 
inhomogeneous viscous fluid. In the Boussinesq approximation, neglecting the square of the velocity of fluid 
flow was obtained and carefully studied the cubic dispersion equation. The roots of the dispersion equation are 
investigated in order to detect the areas of stability and instability of convective currents. Findings- In the 
complex domain is made analysis of roots of the cubic dispersion equation. It is shown that on the chart "angular 
velocity – temperature gradient" there are areas of stable and unstable fluid motion. The Earth’s daily rotation 
does not affect the convection in the mantle, where convective cells are almost cubic with a characteristic 
size 150 .km≈  But the convection in the Earth's outer liquid core is divided into a plurality of thin "pipes." These 
tubes are parallel to the Earth's axis, and currents up and down them alternate. The role of the daily rotation of 
the Earth in the creation of such mechanism of convection is very important. Implications- The method is 
applied to the study of convection in the mantle and liquid core of the Earth. We find some important properties 
of the convective cells in the mantle and the liquid core. The results are in satisfactory agreement with geological 
data. We draw attention to the fact that the structure of "tubes" in the liquid core is such that it stands out 
particularly equatorial toroidal ring. In this ring the convection is absent and, most likely, the liquid of the core 
there is in a highly turbulent state. We assume that this is the zone of turbulence ring may be responsible for the 
emergence of Earth's magnetic field. Originality- These results are new in mathematical physics and dynamics 
of the Earth's shells. 
Keywords: Navier-Stokes equations, thermodynamically inhomogeneous viscous liquid, Boussinesq 
approximation, dispersion equation, stable (unstable) motion, convection, magnetic field 
1. Introduction 
As you know, in the Earth’s depths can really exists the thermal convection of the mantle material. Laboratory 
simulations of the convection was carried out by many researchers, see, eg, Jacoby (1976). Now there are also 
many works on numerical modeling of convection (Aurnou et al., 2003; Brown & Ahlers, 2006; Trubitsyn, 
2009; Benerji Babu et al., 2011; Carcia et al., 2014).  
However it is unreasonable to build too detailed models of convection as we don't know full information about 
the Earth's interior. It is more important to carry out calculations that reflect orders of magnitude, associated with 
the convection. That is why it is important to once again draw attention to the fundamental work Chandrasekhar 
(1961), where Chandrasekhar was studied the stability of convection in a rotating layer thermodynamically 
inhomogeneous fluid. But Chandrasekhar in his book has not studied the main roots of the dispersion equation.  
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The purpose of this article is as follows. We start from the Navier-Stokes equations for thermodynamically 
inhomogeneous viscous fluid. In the Boussinesq approximation, neglecting the square of the velocity of fluid 
flow and omitting the inertia terms, was obtained the cubic dispersion equation. The roots of the dispersion 
equation are investigated in order to detect the stability and instability zones of convective currents. Based on a 
thorough analysis of the roots, we find the geometric shape of convective cells in the mantle and outer liquid 
core of the Earth. 
Now let us make a few general remarks. We take into account compressibility of fluid, like Chandrasekhar 
(1961), in the linear Boussinesq’s approximation, when are considered only small changes of density, which are 
caused by temperature variation. Some comments see also in the review Stacey (2010). Here we use the 
following notation: 

Ω 1s−   – the angular velocity of rotation of the system around the z axis, 

2m
s

ν  
 
 

 – the coefficient of kinematic viscosity, 

2
mg
s
 
  

 – the acceleration of gravity, 

2m
s

χ  
 
 

 – the heat diffusivity coefficient, 

1градα −    – the linear coefficient of thermal expansion, 

градh
m

 
  

 – the initial gradient of temperature. 

2. Derivation of the Dispersion Equation 
The Navier-Stokes equations in view the temperature gradient have the form 
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 (1) 

Heat transfer is described by the equation 

 
2 2 2

1 2 3 2 2 2
1 2 3 1 2 3

.T T T T T T Tu u u
t x x x x x x

χ
 ′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  (2) 

We are working, in addition to the assumption of smallness of the temperature gradient, in the linear 
approximation with respect to the velocities, so that the inertial terms further are rejected, and instead of (1) we 
have 
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  (3) 

The temperature of initial state will take in the form 

 0 3.T T h x′ = −   (4) 

Linearization of the equation of thermal conductivity gives 

 
2 2 2

3 2 2 2
1 2 3

.T T T Th x
t x x x

χ
 ′ ′ ′ ′∂ ∂ ∂ ∂− = + + ∂ ∂ ∂ ∂ 

  (5) 

Further, in our analysis we assume that all quantities are proportional to exponent 

 
ikx i z te μ λ+ +

  (6) 

Here k and μ  are the wave numbers in directions x and z  respectively. Then, the linearized equation (3) 
will take algebraic form 

 

( )
( )

( )
( )

2 2
1 1 2

2 2
2 2 1

2 2
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,
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λ χ μ

′= − − + + Ω
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  (7) 

The incompressibility condition 

 1 2 3

1 2 3

0u u u
x x x

∂ ∂ ∂+ + =
∂ ∂ ∂

  (8) 

gives the ratio 

 1 3 0.ku uμ+ =   (9) 

So, the components 2u and 3u are expressed through 1u  

 ( )
1

2 3 12 2

2 ; .u ku u u
k μλ ν μ
Ω= − =

+ +
  (10) 

Eliminating the pressure from the first and third equations in (7), we find 

 
( ) ( )2 2

2 1 32
.

u k u ku
T

k

μ λ ν μ μ

α

 Ω − + + − ′ =   (11) 

Here 
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( )

2 2
1

2 1 3 12 2

2 ; .u ku u k u u
k

μ μμ μ
μλ ν μ

Ω += − − =
+ +

  (12) 

Therefore, the equation (11) takes the form 

 
( )

( ) ( )2 2 2 22

12 2

4 .
k k

k T u
k

μ λ ν μμα
μλ ν μ

  + + +Ω  ′ = − − 
+ +  

  (13) 

Substituting into the left side (13) the value T ′ from (11), after reducing 1u  and some transformations, we 
obtain 

 ( ) ( )
( ) ( )2 2 2 22 2

2 2
2 2

4 0,
k k h k gk

k

μ λ ν μμ αλ χ μ
μ μλ ν μ

  + + +Ω   + + − − + =   + +  

  (14) 

or, after the multiplication on μ  and division on ( )2 2kλ χ μ+ + : 

 
( ) ( ) ( ) ( )

2 2 2
2 2 2 2

2 2 2 2

4 0.h gk k k
k k

μ α μ λ ν μ
λ ν μ λ χ μ

Ω  − + + + + = + + + +
  (15) 

This is the general dispersion equation (cubic relatively increment λ ) in this problem, obtained previously 
by Chandrasekhar (1961). Next, we will deal with mathematical analysis of the dispersion equation (15). 
3. Analysis of the Roots of the DISPERSION Equation  
The study of the equation (15) is convenient to start with separation of the roots in complex plane ,λ or more 
precisely, their placement in the zones separated by vertical lines 

 ( )2 2Re ;kλ ν μ= − +  ( )2 2Re kλ χ μ= − + .  (16) 

Specifically, this is achieved by relatively simple substitution into the left side (15) the 
values ( )2 2 ,k iλ ν μ λ′= − + + or ( )2 2k iλ χ μ λ′= − + +  with real values ,λ′ and it is proved that (1) never 
satisfied. If we are also using the continuity condition, then it turns out the following accommodations of the 
roots: 

 a). ν χ> . Two roots at ( )2 2Re kλ ν μ< − +  and one root at ( )2 2Re kλ χ μ> − + ;  (17) 

 b). ν χ< . One root at ( )2 2Re kλ χ μ< − + and two roots at ( )2 2Re kλ ν μ> − + .  (18) 

In the middle zone no roots, and the roots in the left lane is not important for our purposes because the 
corresponding damped processes, and the ones are insignificant in the analysis of stability of the system. 
It remains to verify the possibility of moving the roots through the imaginary axis .λ  Results are as follows. In 
the case a) the root responsible for instability can only be real. The instability starts from the value 0λ =  that 
is equivalent to the condition 

 ( ) ( ) ( ) ( )
2 2 2 22 2

2 2 2 2

4, 0.h gkH h k
k k

μ α ν μ
ν μ χ μ

ΩΩ ≡ − + − + >
+ +

  (19) 

In the case b) situation is more complicated. The roots lie on the imaginary axis at 

 ( )
2 32 2 2 24 .h gk kα ν ν μ μ

χ
− + > Ω   (20) 

The border is  

 ( ) ( ) ( ) ( )322 2 2 2 2, 8 2 0.K h h gk v kα ν χ μ ν ν χ μΩ ≡ + − Ω − + + =   (21)  
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On the diagram ( )2 ,hΩ  (Figure 1) the both lines ( )2 , 0H hΩ = and ( ), 0K hΩ = are straight. For reasons of 
continuity we obtain the following location of the specific areas 
 

 
Figure 1. Location of zones of stability (shaded) and instability for a rotating thermodynamically inhomogeneous 

liquid mass. The lines ( ), 0H hΩ =  and ( ), 0K hΩ =  are found from the equations (19) and (21) 
 
4. The Case without Rotation 
Let us first consider the simpler case of a non-rotating system ( )0Ω = . Thus there can be only 1-modal aperiodic 
instability. Criterion of its occurrence is 0H > , or  

 ( )32 2 2 .h gk kα νχ μ> +   (22) 

Further assume isotropic wave propagation inside the cells, i.e., kμ ≈ . Then we will receive critical value of 
wave number  

  

1
4

* .
8
h gk α
νχ

 
=  
 

  (23) 

We see the following. If the convective cells were roughly cubic ~ kμ , the role of the rotation for the Earth's 
shells would always be negligible, because even for the approximately identical ν  and χ we have following 
estimate 
 24 .h gμ >> Ω   (24) 
For the evaluation we take numerical values of parameters for the Earth's mantle by Turcotte & Schubert (1982) 

 
2 2

6 1 6 17
220 , 2 10 , 5 10 , 10 , 0,25 10 .grad m m mh grad g

km s s s
α χ ν− − −= = ⋅ = ⋅ = = ⋅   (25) 

Then, the critical wave number from (23) is equal to 

 * 5 14 10 ,k m− −≈ ⋅   (26)  

and the corresponding wavelength is 

  * 5
*

2 1,5 10 150 ,l m km
k
π= ≈ ⋅ =   (27)  

what is in satisfactory agreement with modern geological data. 
For the liquid core of the Earth is radically changing only the viscosity, and other parameters remain the same. 
Then, according to (26), you can just assume that the critical wavelength varies as 

1
4ν . If we take for the core 

2
5

1 1.2 10 м
с

ν −= ⋅ , as given by Jacobs (1987), then the ratio 
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11

15 44 22 61 4
17

0, 2 10 0,8 10 3 10
0, 25 10

ν
ν

−
− − ⋅  = ≈ ⋅ = ⋅   ⋅   

,  (28)  

and the new critical length 

 * 63 10 150 0, 45l km m−= ⋅ ⋅ =   при  * 113k m−≈   (29)  

mean that the Earth's liquid core can be formed from relatively narrow columns. But we emphasize that adoption 
of the critical values is not required in practice: the differential equation admits any larger waves. 
5. The Case of Rotation 
In the presence of system rotation, most likely, only possible aperiodic instability (when the numerical 
parameters are taken the excess ν  over χ  not so great). The instability criterion under (15) now is: 

 ( )
2 32 2 2 2 24 .h gk kα ν ν μ μ

χ
− + > Ω   (30)  

Assuming again cubic cells kμ ≈ , then the role of rotation is negligible, because even for approximately 
coincidentν and χ цу have the estimate  

 24 .h gα >> Ω   (31) 

Thus, for the Earth’s liquid core the role of rotation in this case is too small, and for the mantle, where ,ν χ>>  
the inequality (31) is further enhanced. 
So, for the Earth's mantle daily rotation is absolutely insignificant. For the core situation is more complex, as the 
geometry of the cubic cells inherent in the mantle, in the core is not obligatory. Consider this question. 
6. Convection in the Earth's Liquid Core 
From (30) it follows that if the instability condition is satisfied for large values, then, by continuity, it will work 
on small values of the wave number. As stated above, for the core is allowed a small horizontal extent of the 
convective cell.  
Therefore, convection in the core must occur in cells that are strongly stretched along the Earth’s rotation axis 
(Figure 2). Moreover, convection is known to dramatically accelerates the transfer of heat in comparison to a simple 
thermal conductivity, therefore, the temperature gradient should sharply drop almost to the level of beginning of the 
instability. (More precisely, it is about exceeding the magnitude of the gradient over adiabatic.) Thus, we need to 
introduce an amendment to the previously received value h  and reduce it to that at which (30) becomes an 
equality at the lowest possible μ (when the cell is extended to approximately the inner solid core), and the most 
unfavorable for the stability k  (and for all other k  and μ  we have in (30) the opposite sign <). 

 
The usual finding the maximum of the left part (30) for k  leads to 

 ( )22 2 23h g kα ν ν μ
χ

= +   (32)  

and 

 ( )22 2 2 2 22 4 .kν μ μ+ = Ω   (33) 

In the second case we can neglect 2μ in comparison with 2 ,k and at 6 11,5 10 мμ − −⋅ with the above 

2
50, 2 10 м
с

ν −= ⋅ we get now  

 3 1 23,3 10 , 2 ,k м км
k
π− −≈ ⋅ ≈   (34)  
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that quality is not contrary to the original hypothesis that the convection cells in the outer core are elongated 
along the rotation axis of the Earth. 
On the influence of the tidal influence of the Moon on the Earth's inner core see Kondratyev (1989). 
7. Conclusions  
The riddle of origin of Earth's magnetic field is connected with solution of the problem of convection in the 
mantle and in the outer liquid core. We start from the Navier-Stokes equations for thermodynamically 
inhomogeneous viscous fluid. In the Boussinesq’s approximation, neglecting the square of the velocity of fluid 
flow and omitting the inertia terms, was obtained the general dispersion equation. The roots of the cubic 
dispersion equation are carefully investigated and the zones of stability and (aperiodic and oscillatory) instability 
of convective currents are detected. Based on a rigorous analysis of the roots, we then make a real assessment of 
the type of convective cells in the mantle and the outer liqued core of the Earth. 
We come to three important conclusions. 
1) Found the stability zones of the convection currents in the Earth’s mantle and liquid core.  
2) Convection in the Earth's liquid core is divided into a plurality of thin "pipes." These tubes are parallel to the 
Earth's axis, and flow up and down them alternate. The role of the Earth’s daily rotation in creation of such 
convection mechanism is very important. 
3) Conversely, the daily rotation of the Earth does not affect the convection in the mantle, where the convective 
cells are almost cubic with a characteristic size 150 .km≈  Here, the centrifugal force is simply added to the 
pressure effect. 

 

 

Figure 2. The scheme of convective cells in the liquid core of the Earth. Alternating current in the cells indicated 
by arrows. Emphasis toroidal ring with turbulent fluid motion 

 
8. Final Comments 
Besides, we make some additional comments. The structure of the "tubes" in the liquid core of the Earth is that it 
stands out the particularly equatorial toroidal ring with strongly turbulent fluid flow. Thus, in the core there is a 
special ring zone, wherein said the convection is absent. There is a fundamental question: is the annular zone 
with strongly turbulent fluid flow is responsible for the creation of Earth's magnetic field? 
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