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Abstract

A new set of laws of motion for turbulent jets propagating in an intergalactic medium characterized by a decreasing
density is derived by applying conservation of momentum flux both in the classical and relativistic framework. Two
characteristic features of radio-galaxies, such as oscillations and curvature, are modeled by a classical helicoidal
jet. A third feature of a radio-galaxy, the appearance of knots, is explained as an effect due to the theory of images.
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1. Introduction

The study of extra-galactic jets started with the observations of NGC 4486 (M87) where ‘a curious straight ray lies
in a sharp gap in the nebulosity . . . ’, see Curtis (1918). More recently the analysis of the radio images of extra-
galactic jets suggests some interesting problems of physics that should be solved. One such problem is that of the
decrease in the velocity as a function of the distance from the parent nucleus, see Laing and Bridle (2002a,b, 2004);
Laing et al. (2006); Laing and Bridle (2014). Various mechanisms have been suggested for the jet’s deceleration,
we report some of them: an interaction between a relativistic jet and the thermal radiation from an Active Galactic
Nuclei (AGN), see Melia and Konigl (1989); the incorporation of mass in two-dimensional relativistic jets, see
Bowman et al. (1996); continuous injection of plasma at the base of the jet and dissipation at some distance
from the central core, see Wang et al. (2004); a rotation-induced Rayleigh–Taylor type instability, see Meliani
and Keppens (2009); and the loading of stellar mass produced in elliptical galaxies, see Perucho et al. (2014).
Other authors, such as Hardcastle and Sakelliou (2004), quote a terminal velocity of 0.3 c and suggest that the jet’s
velocity is constant. A second problem is that of the physical mechanism which bends the jets originating in the
the head–tail radio-galaxies, such as NGC1265, see Owen et al. (1978), or 1159 + 583, see Burns et al. (1979),
or 1638 + 538, see Burns and Owen (1980). The suggested physical mechanisms for bending are: trajectories in
the independent blob model, see Jaffe and Perola (1973); an adiabatic model in which the bending is produced by
the ram pressure of a central galaxy in uniform motion, see O’Donoghue et al. (1993); the ram pressure in cluster
mergers, see Sakelliou and Merrifield (2000). The extragalactic radio-jets are characterized by a radio-luminosity
which is expressed in watts and also the flux of kinetic energy is expressed in watts. The conversion of the flux of
kinetic energy in radio-luminosity through a turbulent cascade has became an active field of research, see Bicknell
and Melrose (1982).

We now pose the following questions.

• Can the physics of turbulent jets, which are observed in the laboratory, be applied to extra-galactic jets?

• Is it possible to generalize the physics of turbulent jets to a medium with a varying density?

• Can we extend to the relativistic regime the physics of turbulent jets?

• Can we explain the curved trajectories of the extra-galactic jets such as NGC1265

• Is it possible to build the image of a curved turbulent jet which is emitting synchrotron radiation?
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In order to answer these questions, we derive the differential equations which model the classical and relativistic
momentum conservation for a jet in the presence of three types of medium, see Sections 2 and 3. A model for the
composition of a decreasing jet velocity along the x-axis with constant velocity of the hosting galaxy along the
y-axis is derived, see Section 4. The presence of oscillations is modeled by a helicoidal jet and a bent helicoidal
jet, see Section 5. Section 6 updates an algorithm which allows building the radio-image of a bent helicoidal jet.

2. Classical Turbulent Jets

2.1 Luminosity Conversion

The total power, Q, released in a turbulent cascade of the Kolmogorov type is, see Pelletier and Zaninetti (1984),

Q ≈ γKHρs2
T , (1)

where γKH = γad
sT
r is the growth rate of K–H instabilities, ρ is the density of the matter, r is the local radius of the

jet and sT is the velocity of sound, see Zaninetti (2007). The total maximum luminosity, Lt, which can be obtained
for the jet in a given region of radius r and length r is

Lt = πr2rQ = γadρs3
Tπr

2 . (2)

The mechanical luminosity of the jet is

Lm =
1
2
ρv3πr2 , (3)

and therefore the efficiency of the conversion, χT , of the total available energy into turbulence is

χT =
Lt

Lm
= γad

2
π

1
M3 ≈

1
M3 , (4)

where M is the Mach number. It is clear that in a hot jet characterized by high values of M the fraction of the
total available energy released firstly in the turbulence and after in non-thermal particles is a small fraction of the
bulk flow energy. The assumption made in the following, in which the bulk flow motion is treated independently
from the non-thermal emission, is now justified. A similar approach can be found in Bicknell and Melrose (1982);
Bicknell (1984).

2.2 The Parameters for a Turbulent Jet

The physics of a turbulent jet can be divided into the simple model and the complex model. The simple model is
characterized by an opening angle α, and the matter’s density ρ is the same inside and outside the jet, see Section
35 in Landau (1987). The complex model is characterized by the turbulent viscosity, νT and, as an example, an
opening angle that is a function of the turbulent viscosity can be derived starting from Equation (5.104) in Pope
(2000)

α = 2 arctan
(
8

(√
2 − 1

)
νT

)
. (5)

In the complex model the matter’s density ρ is included in νT . In both models, the temperature and the pressure
are absent and we can speak of cold jets.

2.3 Momentum Conservation

The conservation of the momentum flux in a ‘turbulent jet’ as outlined in Landau (1987) requires the perpendicular
section to the motion along the Cartesian x-axis, A

A(r) = π r2 (6)

where r is the radius of the jet. The section A at position x0 is

A(x0) = π(x0 tan(
α

2
))2 , (7)

where α is the opening angle and x0 is the initial position on the x-axis. At position x we have

A(x) = π(x tan(
α

2
))2 . (8)

The conservation of momentum flux states that

ρ(x0)v2
0A(x0) = ρ(x)v(x)2A(x) , (9)
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where v(x) is the velocity at position x and v0(x0) is the velocity at position x0.

The selected physical units are pc for length and yr for time; with these units, the initial velocity v0 is expressed in
pc yr−1, 1 yr = 365.25 days. When the initial velocity is expressed in km s−1, the multiplicative factor 1.02 × 10−6

should be applied in order to have the velocity expressed in pc yr−1. The tests are performed on a typical distance
of 15 kpc relative to the jets in 3C 31, see Figure 2 in Laing and Bridle (2002b).

2.4 Constant Density

In the case of a constant density of the intergalactic medium (IGM) along the x-direction, the law of conservation
of the momentum flux, as given by Equation (9), can be written as the differential equation(

d
dt

x (t)
)2

(x (t))2 − v0
2x0

2 = 0 . (10)

The analytical solution of the previous differential equation can be found by imposing x = x0 at t=0,

x(t) =
√

2 tv0x0 + x0
2 . (11)

The asymptotic approximation, see Olver et al. (2010), is

x(t) ∼
√

2
√

v0x0
√

t . (12)

The velocity is
v(t) =

v0x0√
2 tv0x0 + x0

2
, (13)

and its asymptotic approximation

v(t) ∼
√

2
√

v0
√

x0

2
√

t
. (14)

The transit time, ttr, necessary to travel a distance xmax can be derived from Equation (11)

ttr =
−x0

2 + xmax
2

2 v0x0
. (15)

As a numerical example, inserting x0=100 pc, xmax = 15 103 pc = 15 kpc, which is the reference value, and a
classical initial velocity of v0 =10000 km/s ( v0 = 0.0102 pc/yr), we obtain ttr = 1.1 108 yr.

2.5 An Hyperbolic Profile of the Density

The density is assumed to decrease as
ρ = ρ0(

x0

x
) , (16)

where ρ0 = 0 is the density at x = x0. The differential equation that models the momentum flux is

x (t)
(

d
dt

x (t)
)2

− v0
2x0 = 0 , (17)

and its analytical solution is

x(t) =
1
4

(
12 tv0x0

2 + 8 x0
3
)2/3

x0
. (18)

The asymptotic approximation is

x(t) ∼ 1
4

122/3
(
v0x0

2
)2/3

t2/3

x0
. (19)

The analytical solution for the velocity is

v(t) = 2
x0v0

3
√

12 tv0x0
2 + 8 x0

3
, (20)
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and its asymptotic approximation is

v(t) ∼
122/3v0

2/3 3
√

x0

6 3√t
. (21)

The transit time can be derived from Equation (18)

ttr =
−2 x0

3/2 + 2 xmax
3/2

3
√

x0v0
, (22)

and with the same parameters as in Section 2.4, we have ttr = 1.19 107 yr.

2.6 An Inverse Power Law Profile of the Density

The density is assumed to decrease as
ρ = ρ0(

x0

x
)δ , (23)

where ρ0 is the density at x = x0. The differential equation that models the momentum flux is( x0

x

)δ
v2x2 − v0 = 0 . (24)

There is no analytical solution, and we simply express the velocity as a function of the position, x,

v(x) =
x0v0

x
1√(
x0
x

)δ , (25)

see Figure 1.

Figure 1. Classical velocity as a function of the distance from the nucleus when x0 =100 pc and v0 = 10000 km/s: δ 
= 0 (full line), δ = 1 (dashes), δ = 1.2 (dot-dash-dot-dash) and δ = 1.4 (dotted)

3. Relativistic Turbulent Jets
The conservation of the momentum flux in special relativity, SR, in the presence of the velocity v along one

direction states that
(w(

v
c

)2 1

1 − v2

c2

+ p)A(x) = cost , (26)

where A(x) is the considered area in the direction perpendicular to the motion, c is the speed of light, and w is the
enthalpy per unit volume

w = c2ρ + p , (27)

where p is the pressure, see Gourgoulhon (2006) or formula A30 in De Young (2002). In accordance with the
current models of classical turbulent jets, we insert p = 0 and the conservation law for relativistic momentum flux
is

(ρv2 1

1 − v2

c2

)A(x) = cost . (28)
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Our physical units are pc for length and yr for time, and in these units, the speed of light is c = 0.306 pc yr−1.

3.1 Constant Density in SR

The conservation of the relativistic momentum flux when the density is constant can be written as the differential
equation

(
d
dt

x (t)
)2

π (x (t))2
(
tan

(
α

2

))2
1 −

(
d
dt x (t)

)2

c2


−1

−v0
2πx0

2
(
tan

(
α

2

))2
(
1 − v0

2

c2

)−1

= 0 . (29)

An analytical solution of the previous differential equations at the moment of writing does not exist but we can
provide a power series solution of the form

x(t) = a0 + a1t + a2t2 + a3t3 + . . . , (30)

see Tenenbaum and Pollard (1963); Ince (2012). The coefficients an up to order 4 are

a0 = x0

a1 = β0c

a2 =
1
6

3 c2β0
4 x0−3 c2β0

2 x0
x0

2

a3 =
1
6

4 c3β0
7−7 c3β0

5+3 c3β0
3

x0
2 , (31)

where β0 =
v0
c .

In order to find a numerical solution of the above differential equation we isolate the velocity from Equation (29)

v(x; x0, β0, c) =
x0β0c2√

−c2x2β0
2 + c2β0

2x0
2 + c2x2

(32)

and separate the variables ∫ x

x0

√
−c2x2β0

2 + c2β0
2x0

2 + c2x2

x0β0c2 dx =
∫ t

0
dt . (33)

The integral on the left side of the previous equation has an analytical solution and the following non-linear equa-
tion is obtained

AN
AD
= t , (34)

where

AN = β0
2x0

2 ln
(√
−β0

2 + 1x +
√
−x2β0

2 + β0
2x0

2 + x2

)
−β0

2x0
2 ln

(√
−β0

2 + 1 + 1
)

−β0
2x0

2 ln (x0) + x
√
−x2β0

2 + β0
2x0

2 + x2
√
−β0

2 + 1

−x0
2
√
−β0

2 + 1 , (35)

and

AD = 2
√
−β0

2 + 1x0β0 . (36)

Figure 2 reports an example of the above numerical solution.
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Figure 2. Non-linear solution as given by Equation (34) (full line) and series solution as given by Equation (30)
(dashed line) when x0 =100 pc and β0 =0.999

More details on the case of constant density can be found in Zaninetti (2009b).

3.2 A hyperbolic Density Profile in SR

The conservation of the relativistic momentum flux in the presence of an hyperbolic density profile as given by
Equation (16) is

x0 x (t)
(

d
dt

x (t)
)2

π (tan (α/2))2

1 −
(

d
dt x (t)

)2

c2


−1

−v0
2π x0

2 (tan (α/2))2
(
1 − v0

2

c2

)−1

= 0 . (37)

The analytical solution of the previous differential equation is

x(t) =
− 3√2 3

√
x0

3
√(

3 ctβ0
3 − 3 ctβ0 − 2 x0

)2
+ 2 β0

2x0

2 β0
2 − 2

. (38)

The asymptotic approximation is

x(t) ∼ −1
2

3√2 3
√

x0
3√9

3
√
β0

2c2
(
β0

2 − 1
)2(

β0
2 − 1

) (
t−1)2/3

+
β0

2x0

β0
2 − 1

+
2
9

3√2x0
4/3 3√9

3
√
β0

2c2
(
β0

2 − 1
)2 3√

t−1

β0c
(
β0

2 − 1
)2 . (39)

The analytical solution when the velocity is expressed as β = v/c is

β(t) =
−β0

(
3 β0

3ct − 3 β0 ct − 2 x0

)
3
√

x0
3√2((

3 β0
3ct − 3 β0 ct − 2 x0

)2
)2/3 , (40)

and the asymptotic approximation is

β(t) =
−β0

2c
(
β0

2 − 1
)

3
√

x0
3√2 3√9

3√
t−1

3
(
β0

2c2
(
β0

2 − 1
)2
)2/3 . (41)
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3.3 Inverse Power Law Profile of Density in SR

The conservation of the relativistic momentum flux in the presence of a density profile of the inverse power law
type as given by Equation (23) is

−x0
δx−δ+2β0

2β2 + β0
2β2x0

2 + x0
δx−δ+2β2 − β0

2x0
2(

β2 − 1
) (
β0

2 − 1
) = 0 . (42)

This differential equation does not have an analytical solution and the expression for β as a function of the distance
is

β(x) =
x0β0√

−β0
2x2

(
x0
x

)δ
+ β0

2x0
2 + x2

(
x0
x

)δ . (43)

The behavior of β as a function of the distance for different values of δ can be seen in Figure 3.

Figure 3. Relativistic variable β as a function of the distance from the nucleus when x0 =100 pc and β0 =0.9: δ 
= 0 (full line), δ = 1 (dashes), δ = 1.2 (dot-dash-dot-dash) and δ = 1.4 (dotted)

The transit time can be derived from Equation (39)

ttr =
2 x0

2 − 2
√

x0

(
β0

2x0 − β0
2xmax + xmax

)3

3 β0 c
(
β0

2 − 1
)

x0

. (44)

As an example, inserting x0=100 pc, xmax = 15 103 pc, and β0 = 0.9, we have ttr = 2 105 yr.

4. Classical Curved Trajectories

In the presence of a 3D trajectory, r(t), the acceleration is given by

a =
dv
dt

T +
v2

ρ
N , (45)

where v = | dr(t)
dt | = |

ds
dt is the magnitude of the velocity, s is the arc-length of the trajectory, T and N are the

tangential and normal versors to the trajectory, and R is the radius of curvature given by

R =
(
(
d2x
ds2 )2 + (

d2y
ds2 )2 + (

d2z
ds2 )2

)−1/2

, (46)

see exercise 5.30 in Spiegel (1971). A second definition of the radius of curvature when we have a 2D curve
parametrized as y(x) is

R =

(
1 +

(
dy
dx

)2
) 3

2

d2y
dx2

, (47)
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see Equation (12.5) in Granville (1911). In the presence of a trajectory given by a discrete set of points, the circle
of curvature which has radius Rc, and coordinates of its centre (xc, yc), can be drawn when three points are given,
see Appendix A. According to theorem 14.1.1 in Granville (1911), the radius of the circle of curvature and the
radius of curvature are equal.

4.1 The Astronomical Data

s

As an application, we analyse the first part of the right side of NGC1265 where the distances were evaluated 
adopting H0 = 50 km s−1 Mpc−1, for the Hubble constant and z = 0.0183 for the redshift see Xu et al. (1999).
At the moment of writing, there is a more precise evaluation of the Hubble constant, which is H0 = (69.6 ± 0.7)   
km−1 Mpc−1, see Bennett et al. (2014), which, coupled with c = 299792.458 km for the velocity of light, see
Mohr et al. (2012), means

1′′ = 382.15pc . (48)

The trajectory of NGC1265 was derived as follows

1. The data were digitized in ′′ from Figure 3 in Owen et al. (1978) using WebPlotDigitizer, a Web based tool
to extract data from plots.

2. The conversion from ′′ to pc was done using Equation (48).

Figure 4 shows the digitalized 2D trajectory and 8 circles of curvature computed according to Eqs (A.1, A.2,A.3).

Figure 4. The right side of NGC1265, the line with a large width, represents the real data as extracted by the 
author from Figure 3 in Owen, Burns, & Rudnick (1978) and 8 circles of curvature

The average radius of the circle of curvature, Rc, for the first 20 kpc of the right side of NGC1265 is

Rc = (9.22 ± 1.03)kpc . (49)

4.2 Curved Trajectory with Constant Density

A ballistic trajectory is determined on Earth by gravity and aerodynamic drag. Here we assume a non-ballistic
trajectory for the radio-galaxy as being due to the composition of the jet’s motion along the x-axis with a motion
at constant velocity, vg, of the parent galaxy along the y-axis. The peculiar velocity for a galaxy with redshift z can
be evaluated using formula (3) in Freeland et al. (2008). Other authors replace the velocity of the parent galaxy
with the velocity of external winds, see Hardee and Hughes (2003); Perkins et al. (2004).
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When the galaxy’s velocity is expressed in km s−1, the multiplicative factor 1.02 × 10−6 should be applied in order
to have the galaxy’s velocity expressed in pc yr−1. The two equations of motion are

x(t) =
√

2 tv0x0 + x0
2 (50a)

y(t) = y0 + vgt , (50b)

where y0 is the y-position at t = 0. In order to evaluate the radius of curvature in the case of constant density, we
extract t from Equation (50a) and we insert it into Equation (50b)

y(x) =
1
2

vg

(
x2 − x0

2
)

v0x0
+ y0 . (51)

The previous formula allows visualizing the trajectory which represents the best fit for the right side of NGC1265
in the case of constant density, see Figure 5.

Figure 5. Real trajectory of NGC1265 (big stars) and theoretical curved trajectory (full line) in the case of 
constant density. The parameters are x0=100 pc, y0=0 pc, v0 =9620 km/s and vg = 124 km/s

The parameters v0 and vg are found by minimizing the value of χ2 defined as

χ2 =

n∑
i=1

(yi − yi,th)2 , (52)

where yi is the y-value of the ith point in the digitized trajectory and yi,th is the theoretical point obtained by
inserting the x value of the ith point in Equation (51).

The radius of curvature in the case of constant density as given by Equation (46) is

R =

(
x2vg

2 + v0
2x0

2
)3/2

v0
2x0

2vg
, (53)

as a consequence the centripetal acceleration is

v2

R
N =

(
2 tv0x0 + x0

2 +
(
tvg + y0

)2
)

v0
2x0

2vg(
v0

2x0
2 + vg

2 (
2 tv0x0 + x0

2))3/2 N . (54)
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4.3 Curved Trajectory With Hyperbolic Density

In the case of an hyperbolic density profile we can isolate the time in Equation (18) and insert it into Equation
(50b). The resulting trajectory, which is independent of the time, is

y(x) = −2
3

vg

(
x0

3/2 − x3/2
)

√
x0v0

+ y0 . (55)

The trajectory which represents the best fit for the right side of NGC1265 in the case of an hyperbolic density
profile is shown in Figure 6.

Figure 6. Real trajectory of NGC1265 (big stars) and theoretical curved trajectory (full line) in the case of an 
hyperbolic profile of density. The parameters are x0=100 pc, y0=0 pc, v0 =3660 km/s and vg =54.74 km/s

The radius of curvature in the case of an hyperbolic profile of density as given by Equation (46) is

R = 2

(
xvg

2 + v0
2x0

)3/2 √
x

v0
2x0vg

, (56)

and the centripetal acceleration is

v2

R
N =(

A +
(
12 tv0x0

2 + 8 x0
3
)4/3
+ 16 x0

2y0
2
)

v0
2x0
√

4vg

32 x0
2
(
v0

2x0 + 1/4 vg
2(12 tv0 x0

2+8 x0
3)2/3

x0

)3/2
√

(12 tv0 x0
2+8 x0

3)2/3

x0

N , (57)

where
A = 16 t2vg

2x0
2 + 32 tvgx0

2y0 . (58)

5. The Helicoidal Trajectory
The circular helix is

x = a cos(t) (59a)
y = a sin(t) (59b)

z = b t (59c)

where a is the radius and the pitch is 2 π b, see Lipschutz (1969). The radius of curvature of the circular helix is

R =
a2 + b2

a
. (60)
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The arc-length of the helix, s, as a function of time is

s =
√

a2 + b2 t . (61)

The helicoidal jet in the case of constant density is

x =
√

2 tv0x0 + x0
2 (62a)

y = at cos
(
Ωpt

)
(62b)

z = at sin
(
Ωpt

)
, (62c)

where the x − t relationship is given by Equation (11), Ωp is the angular velocity, and the radius of the helix grows
linearly with time according to a linear relationship given by the parameter a. The pitch of the helicoidal jet is√

4
π v0x0

Ωp
+ x0

2 . (63)

The radius of curvature of the helicoidal jet is

R =
NH
DH

, (64)

where
NH =

(
2 a2t3Ωp

2v0 + a2t2Ωp
2x0 + 2 a2tv0 + a2x0 + v0

2x0

)3/2
, (65)

DH =

a
(
8 a2t7Ωp

6v0
3 + 12 a2t6Ωp

6v0
2x0 + 6 a2t5Ωp

6v0x0
2 + a2t4Ωp

6x0
3

+32 a2t5Ωp
4v0

3 + 48 a2t4Ωp
4v0

2x0 + 4 t4Ωp
4v0

4x0 + 24 a2t3Ωp
4v0x0

2

+4 t3Ωp
4v0

3x0
2 + 4 a2t2Ωp

4x0
3 + t2Ωp

4v0
2x0

3 + 32 a2t3Ωp
2v0

3

+48 a2t2Ωp
2v0

2x0 + 21 t2Ωp
2v0

4x0 + 24 a2tΩp
2v0x0

2

+18 tΩp
2v0

3x0
2 + 4 a2Ωp

2x0
3 + 4Ωp

2v0
2x0

3 + v0
4x0

)1/2
. (66)

Figure 7 shows the radius of curvature of the helicoidal jet in kpc as a function of time in units of 107 years.

Figure 7. The radius of curvature of the helicoidal jet versus time when the parameters are x0=100 pc, y0=0 pc, 
and v0 =9620 km/s

The bent helicoidal jet in the case of constant density is

x =
√

2 tv0x0 + x0
2 (67a)

y = at cos
(
Ωpt

)
(67b)

z = at sin
(
Ωpt

)
+ z0 + vgt . (67c)
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A 3D display of the bent helicoidal jet is shown in Figure 8, where the choice of the Euler angles, which define the
observer, corresponds to the astronomical observations.

Figure 8. Continuous 3D surface of NGC1265: the three Eulerian angles characterizing the point of view are Φ=
0 ◦, Θ= 90 ◦, and Ψ= 0 ◦. The physical parameters are x0=100 pc, y0=0 pc, v0 =9620 km/s, vg =124 km/s,

Ωp = 6 10−8 π rad
years and alpha = 5◦. The axes are expressed in kpc units.

Another choice of the Euler angles produces a different projected surface, see Figure 9.

Figure 9. Continuous 3D surface of NGC1265: the three Eulerian angles characterizing the point of view are Φ= 
70 ◦, Θ= 20 ◦, and Ψ= 10 ◦. The physical parameters are the same as in Figure 8 and the axes are expressed in kpc 

units

The radius of curvature of the bent helicoidal jet has a complicated expression and we only present its numerical
behavior, see Figure 10.

The arc-length of the bent helicoidal jet is

s =
∫ t

0

√
NS
DS

dt , (68)

where

NS = 2 a2Ωp
2t3v0 + a2Ωp

2t2x0 + 4 cos
(
Ωpt

)
aΩpt2v0vg + 2 a2tv0

+2 cos
(
Ωpt

)
aΩptvgx0 + a2x0 + 4 sin

(
Ωpt

)
atv0vg

+2 sin
(
Ωpt

)
avgx0 + 2 tv0vg

2 + v0
2x0 + vg

2x0 , (69)
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Figure 10. The radius of curvature of the bent helicoidal jet versus time. The physical parameters are the same as 
Figure 8

and
DS = 2 tv0 + x0 . (70)

The previous integral does not have an analytical expression and the numerical integration between 0 and 108

years, the other parameters as in Figure 10, gives s = 22.2 pc.

6. The Theory of Images

In the case of an optically thin layer, the emissivity is proportional to the number density, C,

jνζ = KC(s) , (71)

where jν is the emission coefficient and K is a constant. This can be the case for synchrotron radiation in the
presence of an isotropic distribution of electrons with a power law distribution in energy, N(E),

N(E)dE = KsE−γ , (72)

where Ks and γ are constants, see Zaninetti (2010) for more details. In the case of constant number density

jνζ = K C s , (73)

where s is the length of the relevant line of sight, this formula is extremely simple and allows building the image
in the appropriate geometrical environment. Two analytical results outline the theoretical framework that should
be verified by the simulation. The first one analyses the behavior of the intensity or brightness along a jet when the
distance from the origin, x, is fixed. We assume that the number density C is constant in a cross section of radius
a and then falls to 0, see Figure 11.

The length of sight, when the observer is situated at the infinity of the y-axis, is the locus parallel to the y-axis
which crosses the position x in a Cartesian x − y plane and terminates at the external circle of radius a. The locus
length is

lab = 2 × (
√

a2 − x2) ; 0 ≤ x < a . (74)

When the number density C is constant on a cylinder of radius a, the intensity or brightness of radiation is

I0a = C × 2 × (
√

a2 − x2) ; 0 ≤ x < a , (75)

or

I0a = C × 2 × a × sin(β) ;−π
2
≤ β ≤ π

2
, (76)
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Figure 11. The source is represented through a circular section perpendicular to the jet axis. The observer is 
situated along the y-direction, one line of sight is indicated and the angle β is clearly indicated

which can be called the ‘trigonometrical law’ for the intensity or brightness. The second analytical result can be
derived when the curved shape of a jet of finite cross section is parametrized by a toroidal helix. The toroidal helix
has the following parametric equations:

x = cos(α) · (R + r · cos(θ))
y = sin(α) · (R + r · cos(θ)) (77)

z = r · sin(θ) + α
n r
2π

,

(78)

where θ ∈ [0, 2π), α ∈ [0, 2π), n r is the distance along the z-axis after an angle α = 2π, and n is an integer. We
now analyse the case in which

α ≪ 2π
n
, (79)

where the right-hand side is the value of the angle after which the toroidal helix has advanced by r along the
z-direction. Figure 12 shows a section in the middle of the toroidal helix z = 0, from which is possible to see that
the dotted line presents the longest line of sight, lmax, which starts from x = R when the observer is at the infinity
of the y-axis.

The shortest line of sight is 2r. The maximum enhancement in the presence of a constant number density, e, is

e =
lmax

2r
. (80)

A simple geometrical demonstration gives

e =
1
2

√
2 R + r
√

r
. (81)

The relationship between the radius of curvature, R, and the radius of the toroidal helix, r, which produces an
enhancement e in the intensity or brightness is

R
r
= 2 e2 − 1

2
. (82)

We now outline how it is possible to build a radio-image. The number density is stored on a 3D grid M(i, j, k)
where i, j and k are indices varying from 1 to pixels. The orientation of the object is characterized by the Euler
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Figure 12. The section of one-fourth of a toroidal helix is represented through a circle of radius R − r and a bigger 
circle of radius R + r. The observer is situated along the y-direction at infinity and the line of sight of maximum 

length is indicated

angles (Φ,Θ,Ψ) and therefore by a 3 × 3 rotation matrix, E, see Goldstein et al. (2002). The gridM(i, j, k) is then
rotated according to the chosen Euler angles. The intensity map is obtained by summing the points of the rotated
images along a particular direction, and the intensity is

I(i, j) =
∑

k

△ s ×M(i, j, k) (83)

optically thin layer linear case ,

where △s is the spatial interval between the various values of intensity and the sum is performed over the interval
of existence of the index k. In this grid the little squares that are characterized by the position of the indexes i, j
correspond to a different line of sight.

The effect of the insertion of a threshold intensity, Itr, given by the observational techniques, is now analysed. The
threshold intensity can be parametrized to Imax, the maximum value of intensity characterizing the map,

Itr =
Imax

f actor
, (84)

where the parameter factor is greater than one.

A map for the emissivity of a jet can be built by employing the following algorithm:

• A great number of points, for example, one million, is inserted into a bent helicoidal jet with given charac-
teristic parameters.

• This set of points is rotated according to the three Euler angles which identify the observer’s point of view.

• The 2D matrix which represents the intensity of the non-thermal emission is built according to procedure
(84).

Figure 13 shows the projected points. The two analytical results, the enhancement of the intensity in the central
line and the knot structure due to the curvature along the line of sight, are clearly visible in Figure 14, which shows
the intensity of a non-thermal map of NGC1265.

A first comparison of the previous figure can be done with Figure 1 in Aloy et al. (2003) where a 3D relativistic
hydrodynamic simulation for the precessing beam was carried out. A second comparison can be done with the
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Figure 13. Continuous 3D trajectory of NGC1265: the three Eulerian angles characterizing the point of view are 
Φ= 0 ◦, Θ= 90 ◦, and Ψ= 0 ◦. The physical parameters are the same as Figure 8.

Figure 14. Theoretical 2D map of the surface brightness of the emission of NGC1265 with basic parameters as in 
Figure 13. The integration is performed on a cubic grid of 10003 pixels and factor = 4
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pseudo-synchrotron intensities visible in the figures of Hardee and Hughes (2003); Hardee et al. (2005) where the
knots in the radio-jets were simulated in the framework of helical relativistic instabilities. A third comparison can
be done with Figure 3 in Laing and Bridle (2014) where the observed and model total-intensity images are reported
for 15 radio-galaxies without bending effects.

7. Conclusions

Classical turbulence: Turbulent jets are usually modeled by a temporal evolution with density equal to that of the
surrounding medium. Here, in order to cover the astrophysical applications, we considered an hyperbolic profile of
density, see the solution (18) and an asymptotic solution (19). The case of a density which follows an inverse power
law is limited to the derivation of the velocity, see Equation (25). This inverse power law case allows matching a
wide variety of astrophysical situations, as an example, when δ = 2, the velocity does not decreases with distance.

This is obvious from the conservation equation, ρvA = constant. If A goes as r2 and ρ goes with the inverse of the
square of distance in a conical jet, v is constant.

Relativistic turbulence: The conservation of the relativistic momentum flux for turbulent jets is here analysed
in three cases. The first case is that with a surrounding medium having constant density, where the analytical
result is limited to a series expansion for the solution, see Equation (30). The second case is that of an hyperbolic
density decrease for the surrounding medium, for which we derived an analytical solution see Equation (38) and
an asymptotic solution, see Equation (39). The third case is that where the surrounding density decreases with a
power law behavior: the analytical result is limited to the velocity–distance relationship, see Equation (43).

The curvature of the jet: The composition of the velocity is discussed in the light of the radius of curvature and
the standard mathematical definition is given, see Equation (47). The astronomical counterpart is the radius of the
circle of curvature which is shown in Figure 4 for NGC1265. Two analytical solutions are given for the curved
trajectory, see Eqs (50a) and (50b), in the case of constant density and Equation (55) for an hyperbolic decrease
in density. A careful analysis of Figures 5 and 6 does not show an accurate coincidence between the predictions
of the model and the digitized trajectory. In this case, its χ2 can be lowered by introducing other effects such as
photon losses due to synchrotron radiation or another density profile.

Helicoidal bent jet: The precession is here modeled by an helicoidal jet, see Equation 62, which has a pitch
and radius of curvature given by Eqs (63) and (64). The composition with the velocity of the host galaxy allows
modelling the a helicoidal jet in which the radius of curvature can be visualized only numerically, see Figure 10.
The arc-length has a complicated expression, which is given by Equation (68).

Theoretical radio maps: The radio image of an extragalactic radio source is built adopting: (i) a uniform number
density of synchrotron emitters over the entire jet, (ii) the thin layer approximation. The two theoretical effects of
central brightening, see Equation (76), and intensity brightening due to the curvature of the emitting region, see
Equation (81), are both visible in the simulation of NGC1265, see Figure 14.

New analytical results can be obtained expressing the helicoidal trajectory in cylindrical coordinates or analysing
the ‘valley on the top’ effect which is due to the velocity profile in the direction perpendicular to the motion, see
Zaninetti (2009a). The previously cited papers solve some of the problems connected with the radio-jets but leave
other problems open, and Table 1 reports their status.

Problem Laing&Bridle 2002 Hardee et al.2005 this paper

distance along the jet numerical not analytical
velocity along the jet numerical not analytical
knots not instabilities image theory
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A The circle of Curvature    
Once three points are selected on a curve, (x1, y1), (x2, y2), (x3, y3), the circle of curvature has radius

Rc =
NR
DR

, (A.1)

where

NR =
{ (

x2
2 − 2 x2x3 + x3

2 + y2
2 − 2 y2y3 + y3

2
)
×(

x1
2 − 2 x1x3 + x3

2 + y1
2 − 2y1y3 + y3

2
)
×(

x1
2 − 2 x1x2 + x2

2 + y1
2 − 2 y1y2 + y2

2
) }(1/2)

,

DR = 2 x1y2 − 2 x1y3 − 2 x2y1 + 2 x2y3 + 2 x3y1 − 2 x3y2 .

The two coordinates of the centre of the circle, (xc, yc), are

xc =
NXC
DXC

, (A.2)

where

NXC = x1
2y2 − x1

2y3 − x2
2y1 + x2

2y3 + x3
2y1 − x3

2y2 + y1
2y2

−y1
2y3 − y1y2

2 + y1y3
2 + y2

2y3 − y2y3
2 ,

DXC = 2 x1y2 − 2 x1y3 − 2 x2y1 + 2 x2y3 + 2 x3y1 − 2 x3y2 ,

and
yc =

NYC
DYC

, (A.3)

where

NYC = −x1
2x2 + x1

2x3 + x1x2
2 − x1x3

2 + x1y2
2 − x1y3

2

−x2
2x3 + x2x3

2 − x2y1
2 + x2y3

2 + x3y1
2 − x3y2

2 ,

DYC = 2 x1y2 − 2 x1y3 − 2 x2y1 + 2 x2y3 + 2 x3y1 − 2 x3y2 .

References
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