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Correspondence: Josip Śoln, JZS Phys-Tech, Vienna, Virginia 22182, USA. E-mail: jurasoln@yahoo.com

Received: June 27, 2015 Accepted: July 7, 2015 Online Published: July 14, 2015

doi:10.5539/apr.v7n4p37 URL: http://dx.doi.org/10.5539/apr.v7n4p37

Abstract

Here one reviews the particle limiting velocities derived from the Einstein’s kinematic generated bicubic equation:
c1, the primary limiting velocity, c2, the obscure limiting velocity and c3, the normal limiting velocity. While c1 and
c3 are real c2 is imaginary. Each of these limiting velocities depend on particle physics parameters of energy, E,
mass, m, and ordinary velocity, v in such a way that c2

1, c2
2 andc2

3 are all related to each other by simple transforms,
leaving invariant the zero sum rule, c2

1 + c2
2 + c2

3 = 0. As such, they form the bicubic particle kinematics. Now
for the problem at hand, the limiting velocities are calculated specifically for the 0.5 MeV mass electron in the
PeV energy region from the 2010 Crab Nebula Flare. Of the three solutions, c1, c2 and c3 one finds c1 to be very
large and likely unphysical, similarly imaginary c2 with very large absolute value also likely unphysical and both
of them Lorentz violating (LV), while the calculated normal limiting velocity c3 has acceptable values in this high
energy case. With the electron energy in the PeV region, the electron mass has very little influence on c3. Even so
one calculates miniscule subluminal and superluminal Lorentz violations, when respectively c3 ≾ c and c3 ≿ c,
and the Lorentz invariance (LI) when the evaluation yields c3 = c. Qualitatively, because of miniscule masses,
the calculated electron limiting velocity due to the Crab Nebula Flare PeV events shows great deal of similarities
with the calculated neutrino limiting velocity from the OPERA neutrino velocity experiments. To get bigger mass
effects on limiting velocities, one needs to go from the energy region E ≫ mc2 to the energy region E ≿ mc2 .
With this, one would see whether in the lower energy region one has also c3 ≃ O (c) with LI and LV small portions.
Also lower energy electron velocities, may even provide physical reasons for the existance or non-existance of c1
and c2.
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1. Introduction

The discussions about the Lorentz invariance (LI) and possible Lorentz violation (LV) go in hand with experimental
interests to study the neutrino and electron ordinary as well as limiting velocities. For neutrinos one has the well
known 17 GeV OPERA experiment (Strauss, 2014), while in the PeV energy regions, one can study the neutrino
and electron velocities from the 2010 Crab Nebula Flare ( see Stecker, 2014) and the Ice Cube PeV events (Aartsen
et al., 2013; Borriello, Chakraborty, Mirizzi, & Serpico, 2013).

In what follows, the emphasis will be on the electron limiting velocity, which from the practical point of view,
complies the best with the solution for the normal limiting velocity c3, as elaborated in Soln (2014). This will be
done in the same manner as it was already done for the neutrino limiting velocity in Soln (2014). However, although
in both cases one talks about very high energy particles the difference comes from the fact that neutrino originated
from the well defined OPERA laboratory source (Strauss, 2014), while electrons have extragalactic origin (Aartsen
et al., 2013; Borriello, Chakraborty, Mirizzi, & Serpico, 2013; Stecker, 2014; ). The major difference between the
neutrino and the electron cases comes from the fact that the mass of the electron is well known at mec2 = 0.51MeV ,
while for the flavor neutrinos Dirac masses were chosen through the νS M, the minimal extension of the S M
(Standard Model) by introducing the right-handed neutrino field νR which happens after spontaneous breaking
of the electroweek gauge symmetry (Soln, 2014; Castelo-Branco, & Emmanuel-Costa, 201; Gupta, Joshipura, &
Patel, 2013). The freedom in the strength of the spontaneous symmetry breaking allows the values of neutrino
flavor masses mν(α)c2, (α = e, µ, τ) be consistent with the mass-state neutrino masses mν(i)c2, (i = 1, 2, 3), (Soln,
2014; Castelo-Branco, & Emmanuel-Costa, 201; Gupta, Joshipura, & Patel, 2013). With tri-bimaxial neutrino
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matrix from Harrison, Perkins, and Scott (2002) for α = µ, one formulates m2
ν(α), as average value of m2

ν(i) over
fixed flavor α = µ to obtain mν(µ)c2 = 0.076eV . This is miniscule when compared to the neutrino energy of 17GeV .
Similarly one sees that also in the case of electron mec2 is miniscule when compared to the PeV electron energy,
making these two cases similar.

Technically, it will be squares ( c2
i , i = 1, 2, 3) of the three electron limiting velocities, primary, c1, obscure,

c2, and normal, c3, that will be derived in exact forms from the bicubic equation as shown in Soln (2014). To
better exemplify the high energy behaviors from exact solutions, the Taylor series expansions are done in terms of
(mv2/E) ≺ (2/3

√
3) with m, v and E being particle mass, ordinary velocity and energy, respectively. Actually, the

parameters m, v and E for both the muon neutrino OPERA experiment (Strauss, 2014; Soln, 2014) and the electron
2010 Crab Nebula Flare data from Stecker (2014) obey much stronger condition (mv2/E) ≪ 1. This condition
assures that one of the limiting velocities,the normal limiting velocity, c3, will yield c3 ≃ O(v). As a consequence,
any time v is measured to be close to c one has the approximate LI. Otherwise when and if v ≺ c or v ≻ c one will
have either subluminal or superluminal LV. As to the primary c1and obscure, c2 limiting velocities for the electron
2010 Crab Nebula Flare data they are likely unphysical to be observable.

In Section 2, the general outline of the bicubic kinematics through the bicubic equation, with three exact solutions
for squares of theoretical particle limiting velocities, is given. Following Soln (2014) these squares of theoretical
particle limiting velocities are exhibited as functions of particle ordinary velocity v, particle mass m, and particle
energy E. Here, one introduces also the expressions for the squares of the ordinary particle velocity v, by inverting
the solutions for the squares of the particle limiting velocities, c2

1, c
2
2 and c2

3 to be used as consistency checks for
the limiting velocity solutions. Here also three limiting velocity sum rules are introduced of which one being the
exact zero sum rule c2

1 + c2
2 + c2

3 = 0 indicating that one, here c2, is imaginary.

Theoretical particle limiting velocity solutions are analyzed in Section 3, where one finds out that the solution c3,
the normal limiting velocity, fits best the astrophysical electron velocity data from the 2010 Crab Nebula Flare
or qualitatively the Ice Cube PeV events from Stecker (2014). The theoretical normal electron limiting velocity
solution c3 will be qualitatively compared to the normal neutrino limiting velocity solution c3 in Soln (2014) for
the OPERA experiments from Strauss (2014).

Section 4 is devoted to final remarks and conclusion. Comparison with other approaches in the literature treating the
possibility of Lorentz invariance violation from changes in Dirac equation to changes in the relativistic kinematics
will be made.

2. Recapitulations and Bicubic Kinematics from the Bicubic Equation Particle Limiting Velocity Solutions

Here, in order to establish the particle bicubic kinematics, one briefly recapitulates the derivation of particle limiting
velocity expressions of the primary c1,the obscure c2, and the normal one c3, in terms of particle parameters m, v
and E as done in Soln (2014). To complete the loop, here one also expresses the particle velocity v in terms of each
of limiting velocities c1, c2, and c3, which facilitates judging their relative to each other values without detailed
calculations.

To detail the particle bicubic kinematics, as shown inSoln (2014), one starts with the Einstein’s kinematics of the
particle mass shell condition −→p 2c2 − E2 + m2c4 = 0 into which one substitutes the momentum −→p = E −→v c−2 and
then identifying c, the velocity of light, as actually the particle limiting velocity,to end up for c with the bicubic
equation

m2c6 − E2c2 + E2v2 = 0 (1.1)

where, m, v and E , as already mentioned, being particle mass, velocity and energy. From (1.1) one is to calculate
the particle limiting velocities. As shown in Soln (2014), the solutions of (1.1) are,
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z =
3
√
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1
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3
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2 ≺ 0;

c2
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2E
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3m
sin
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3
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]
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c2
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]
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c2
3 =

2E
√

3m
sin

[
1
3

sin−1 (z)
]
≻ 0 (2.1)

As c2
2 ≺ 0 one can consider the obscure c2 ,being imaginary,primarily as unphysical. However, for the sake of

completeness, at least on the formal level, relations (2.1) are taken as the basis for the particle bicubic kinematics
as every ci , i = 1, 2, 3 , is related to m, v and E. At this point, the fact that c2

1,c
2
2 and c2

3 in (2.1), as solutions of
bicubic equation (1.1) do not contain explicitly the velocity of light c, allows us to rewrite (1.1) by replacing c
with yet to be determined limiting velocities c1,c2 and c3 (c → ci). This yields the bicubic equation (1.2) without
explicit reference to c but equivalent to(1.1),

mc2
i

E

2

− 1

 c2
i + v2 = 0, i = 1, 2, 3 (1.2)

Now, in the bicubic solutions (2.1) there are no beforehand reference to the velocity of light c; it can only occur in
the solutions (2.1) numerically. Of course, bicubic equations (1.1) and (1.2) yield exactly the same solutions(2.1)
where to solutions from (1. 2) at the end one assigns i = 1, 2 or 3. However, equation (1.2) can be used also directly
to verify solutions particularly the ones with approximations.

Simple refinements to the bicubic kinematics come directly from solutions in (2.1) where one explicitly derives
three sum rules for squares of limiting velocities of which one is the zero sum rule for the squares of particle
limiting velocities,

c2
1 =

E
m

cos
[
1
3

sin−1 (z)
]
− 1

2
c2

3 ≻ 0 (2.2)

c2
2 = −

E
m

cos
[
1
3

sin−1 (z)
]
− 1

2
c2

3 ≺ 0 (2.3)

c2
1 + c2

2 + c2
3 = 0 (2.4)

These relations amplify the interdependence between the primary,c1, obscure,c2, and normal,c3, limiting velocities
for the same physical parameters m, v and E. Of course, these relations demand that at least one be imaginary (but
no more than two). These interdependences (2. 2, 3, 4) also suggest that one actually has a simple, say, bicubic
particle system with fixed physical parameters m, v and E. The individual particles associated with c1 , c2 and c3
limiting velocities, can be called , respectively, primary, obscure and normal particles. Now, one can even entertain
the idea that the obscure particle could even be the elusive dark matter particle which here cannot be directly
observed because it has imaginary limiting velocity c2.

Performing the inversions of (2.1) one sees other aspects of bicubic particle kinematics such as complementary to
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(2, 2, 3, 4) restrictions on primary,c1, obscure,c2, and normal,c3 limiting velocities.
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Numerically z is the same in (3. 1, 2, 3 and 4). As such it demands restrictions on primary, c1, obscure,c2, and
normal,c3,limiting velocities on the left hand side of (3. 1, 2, 3 and 4). From inversion of (3.3) one has (3.4) which
yields important general information that v ≺ c3.

Refinements to the particle bicubic kinematics, appearing on the left hand sides of (3. 1, 2, 3) come from restric-
tions on the inverse trigonometric functions sin−1 and cos−1 to their principal values. These restrictions can be
emphasized explicitly on primary,c1, obscure,c2 and normal,c3, limiting velocities, respectively, as follows,

c2
1 ≤

2E
√

3m
, − c2

2 ≤
2E
√

3m
, c2

3 ≤
2E
√

3m
(3.5,6,7)

The importance of relations (3. 5, 6, 7) is to verify that explicit solutions for c2
1, c2

2 and c2
3 are within allowed values.

By taking v −→ 0 limits in (2.1) one notices the difference in behaviors of bicubic and relativistic particle kine-
matics. To begin with, the limit of v −→ 0 implies the vanishing of the normal limiting velocity, c3 → 0, implying
that at the rest normal limiting velocity energy with c2

3 is not there. But for other two limiting velocities, primary,
c1, and obscure, c2, one derives that for v −→ 0 , E → mc2

1 and E → m(−c2
2) each of them becoming the respec-

tive rest primary limiting velocity energy and rest obscure limiting velocity energy both of them positive since on
general grounds from (2.1) c2

2 ≺ 0. Of course now, the zero sum rule (2. 4) for limiting velocities shrinks simply
to c2

1 + c2
2 = 0. This zero sum rule for the squares of primary,c1, and obscure,c2, limiting velocities imply the

equivalence of equal mass primary and obscure particle rest energies, mc2
1 = m(−c2

2). However, as it is likely that
c2 is unphysical, this equality would imply that c1 is also likely unphysical.

In high energy region,E ≻ mv2, the Taylor series of (2.1) for squares of primary, obscure and normal limiting
velocities become, respectively
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(
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E
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Of course, the zero sum rule for the squares of particle limiting velocities (2. 4) is also present in (4). Also, the
restrictions (3. 5, 6, 7) on the limiting velocities can be easily satisfied by the individual solutions in (4).

Let us mention that while globally the high energy astrophysical electron velocity data from 2010 Crab Nebula
Flare, as collected by Stecker (2014), will be compared and discussed systematically in terms of primary, obscure
and normal electrons, each of them with the same physical parameters, m, v and E. Presently, however, it is the
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normal electron with normal limiting velocity c3 from (4) that will describe pretty much the data at hand, rather
in the same way as it described the neutrino OPERA limiting velocity measurements (Strauss, 2014; Soln, 2014).
The similarity comes from the fact that in either case,a particle mass is practically negligible when compared to its
energy. As seen from (4), the normal limiting velocity c3 is then basically determined by the measured velocity v.

3. Limiting velocities of the astrophysical electron

Analytical particle limiting velocity solutions from the bicubic equation in Soln (2014), applied already to the
OPERA neutrino velocity experiments (Strauss, 2014), are now expanded and applied to the astrophysical electron
velocity data from the 2010 Crab Nebula Flare and qualitatively to the Ice Cube PeV events as presented in Stecker
(2014). All the limiting velocities, primary c1, obscure c2 and normal c3 will be analyzed with these real data. In
the PeV energy region, this analysis will show very interesting and considerable differences between c1, c2 and c3
although only, at the moment,the normal limiting velocity c3will indicate to be physically measurable.

The electron data of energy, mass and velocity from Stecker (2014) for the Crab Nebula Flare in 2010 that will be
analyzed here can be summarized as follows

Ee ≃5.1PeV, mec2 ≃ 0.51MeV,

ve ≃ (1 + δ) c,

−8 × 10−17 ≲δ ≲ 5 × 10−21 (5)

where the negative, zero and positive δ corresponds respectively to the subluminal, luminal and superluminal
electron. Because mec2/Ee ≃ 10−10 ⪕ 1 it is readily seen that the perturbation solutions (4) need just few first
terms to deduce the limiting velocities. Hence, for Crab Nebula Flare electrons in 2010, from relation (4) one
calculates analytically the squares of limiting velocities with the data in (6) to obtain,
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Restrictions (3. 5, 6, 7) are obeyed in respective solutions of limiting velocities. Here one also notices that the
limiting velocity zero squares sum rule (2. 4) is satisfied. Finally from (6) one deduces approximately the linear
limiting velocities as,
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c,

c3 ≃ve ≃ (1 + δ)c; − 8 × 10−17 ≲ δ ≲ 5 × 10−21. (7)

The normal limiting velocity c3,as seen from the last line in (7), is describing numerically the Crab Nebula Flare
in 2010 data from (5) dutifully both in their quadratic and linear forms, in relations (6) and (7), respectively. From
relation (7) one sees that the normal limiting velocity c3 supports LI when c3 = c. When δ ≻ 0 the normal limiting
velocity, satisfying c3 ≿ c ,mostly will support small LV. When δ ≺ 0 , because electron mass being negligible,
the normal limiting velocity, satisfying c3 ≲ c ,will mostly support small LV. What one also notices is that with
Crab Nebula Flare in 2010 data from (6) the primary c1 and the obscure c2 limiting velocities are numerically far
superior to the normal limiting velocity c3 as the absolute values of the primary c1 and the obscure c2 limiting
velocities is about 105 times larger and as such support only LV. As such they are likely unphysical. The remote
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chance for any possible measurable effects by c1 and c2 could perhaps occur in experiments with much lower
electron energies. This so in particular as imaginary c2 is a good candidate for describing the obscure ”dark” mater
particles. The lower electron energy would also allow bigger role for the electron mass in deciding the value of c3.

4. Final remarks and conclusion

When analyzing the limiting velocity results with solutions (6) and (7) from bicubic equation of Soln (2014) one
cannot but notice that the electron energy of 5.1PeV makes the electron mass energy of 0.51MeV miniscule by
comparison. This can be taken as the main reason why the normal limiting velocity c3 , on one hand can be so
close to c, and on the other hand somewhat different from c, the velocity of light. The same situation occurred in
the analysis of the OPERA neutrino velocity experiments (Strauss, 2014), with solutions from bicubic equation in
Soln (2014) for the normal limiting velocity c3 also being very close to c. Hence, it would be desirable to have
electron velocity experiments where the electron energy would not be too far away from the GeV values.

The humongous value of about 105c of the primary limiting velocity c1 is difficult not to notice in (6) and (7). It
almost offers itself for a question: Was this the velocity that was important in the Universe only in the far past ?
More study should go into the primary limiting velocity c1. As it stands, it is likely unphysical.

The imaginary value of the obscure limiting velocity c2 while being somewhat unusual may have explanation.
Namely,it is expressed in terms of real Ee, me and ve and the imaginary value of c2 allows the obscure or ”dark”
electron to be only in an enclosed kinematical region. Like for c3 and c1, better understanding could also be obtained
for c2 if dealing with lower energy particles, E ≪ 5.1PeV . This may allow to see better weather c1 and c2 have a
fundamental role in particle physics and also more details about LV caused by c3. In other words, sticking with the
electron, in order to see full effects of ve, me and Ee on c1, c2 and particularly on c3, the electron energy should be
lowered to values satisfying Ee ≳ mec2.
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