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Abstract 

In previous paper, we showed that the elementary particles mass spectrum can be computed from theory using a 
resonance equation. The predicted H0 mass agrees with the latest CERN publications. As a result, the H0 acquires 
its mass exactly in the same geometry as the Z0 and the W±; it is not a “purely scalar boson” and then quadratic 
divergences are inexistent. In this paper, we find an underlying structure of the field with 19 pure states, where 36 
quark states (including color) and 3 or 6 neutrinos states are mixtures, and we show that the CKM and PMNS 
matrices elements come from the equation and the field structure. We conclude that the field is natural since over 
the 23 SM parameters, at least 19 are fully constrained by the field structure. 
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1. Introduction 

One mystery of the time is the very small mass of the Higgs boson; augmented with quadratic divergences it seems 
to opens the roads to new physics. But it is also part of a wider mystery, namely the long list of free parameters that 
feed all viable theories. At present time, none predicts those and the multiverse assumption becomes tempting.  

In a non-conventional way, starting with de Broglie’s thesis and numerical data, we showed (Consiglio, 2014a, 
2014b) that the elementary particles mass spectrum depends on a handful of integral numbers. In this paper, we 
first review the logic, including the mass equation and the numerical results. Once the link with leptons and quarks 
masses is understood, it shows that the bosons masses are fully constrained, and that the H0 acquires mass exactly 
in the same manner as the W± and Z0; hence it is not a purely scalar boson, and a very simple empirical fit exists 
with the W± mass and the Weinberg angle. It is then a “usual” vector boson that mediates some unknown 
exchanges, but also suggests a natural candidate to mediate gravitation in an extended electroweak theory. 

Next, we picture the field as a whole and reduce it to 19 fundamental objects plus 42 mixed states (quarks and 
neutrinos); we find that 4 of the 19 objects (corresponding to 4 quarks masses) mix to all quarks and neutrinos. For 
this, we show that those masses are in close logical and numerical relations with the Cabibbo-Kobayashi-Maskawa 
(CKM) and Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrices, and that only the u and d quarks are real 
mixes. Neutrinos are also shown to be mixes of the same objects. Here, a geometrical or dimensional inversion 
appears which is reminiscent of the see-saw mechanism. 

We conclude that the universe is natural because with 19 coherent standard model (SM) parameters, out of 23, we 
have largely exceeded the critical point at which the evidences cannot be so consistent in logic and precision 
without approaching some underlying truth.  

2. Elementary Particles Mass 

2.1 Deriving a Mass Equation 

The logic is inspired of the Feynman-Wheeler absorber theory (Wheeler & Feynman, 1945, 1949) and we assume 
that the wave is the physical exchange at the origin of mass; but energy exchange is momentum, and it gives a 
pressure field that “cages” the particle charges and self-energy. The Cramer interpretation of quantum mechanics 
(Cramer, 1986) is complimentary, and we assume that the self-energy is the Cramer wave – which here is 
permanent. The idea is similar to the Poincaré stress (Poincaré, 1903) though not identical as we split the particle. 

The relation E = h ν as first used in de Broglie (1924) for massive particles suggests some form of resonance and 
the standard theory heavily uses the concept, including widths. Moreover, the Compton wavelength λC = h/m c 
when compared to the de Broglie wavelength λD = h/m v gives a form of symmetry where the light-speed 
singularity has the role of a mirror that directly applies to velocity (de Broglie’s Vv = c2).  
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It is minimal to assume that all resonances come from the same fundamental of length 1 (a natural unit). In the one 
dimensional case, the pressure is a simple force, and resonance implies an integral number N such that we have: m	 = 	X	N + μ	 
where m is the particle mass, and X is a natural constant. At this point, this is just a vibrating string. The coefficient 
μ represents a massless self-energy that necessarily propagates, and it implies a double resonance. Hence the actual 
resonance number is a product N P, with P an integral number, and we get: m	 = 	X	N	P + 	μ	 
Caging a massless particle requires symmetry, a repelling force that applies to the particle self-energy and to the 
pressure field as well; precisely to the first resonance wall (1/NP) and to the self-energy μ. There must be a residual 
distance d ≠ 0 between the first resonance wall and the current μ at which the force applies. It gives: m	 = 	μ + X	(d + (NP)ିଵ)ିଵ	 
Now the distance d also depends on 1/NP because energy comes from the distance (d + 1/NP) and it is equivalent 
to a potential; actually two potentials that sum or subtract, one is 1/NP and the other is d. A potential is quantized; 
1/NP is already quantized (in a reverse manner), and then d is also quantized. Then we use d = K D, with K an 
integral number and D a length. In three dimensions, we get a cube: m = μ + X(1/NP + 	K	D)ଷ 																																																																									(1) 
Essentially, this is thermodynamics; P V = kB T (not the same P as in (1)) with a single molecule μ in a volume V = 
(d + 1/N P)3, where kB T = constant = μ c2, and the rest of the particle energy is interaction – the Feynman-Wheeler 
exchanges – while μ is the Cramer wave. (The point is discussed briefly in addendum).  

Now contrary to the one-dimensional problem, we have more degrees of freedom and the resonance paths 
associated to N and P can have different geometries: 

- Case 1: A double radial resonance. It is compatible with N = P and can trivially be identified to U(1) 
and (to some extent) to the Poincaré stress in which case we should have KD > 0, K increasing with 
mass.  

- Case 2: A double circular resonance: It is also compatible with N = P and the forces at work in the 
resonance correspond to a symmetry group that inverts rotation axis; hence it must be identified to 
SU(2). Moreover, in this case, we should find X → X/n π; this is because, compared to the first case, 
even though the resonance is circular the pressure is still applied to its geometrical center. 

- Case 3: A mixed resonance implies N ≠ P with a geometrical constraint between π, N and P since we 
must have a phase lock between the two paths; hence we should get approximate equalities like: 

N P π ≈ an integral number 

The last known symmetry is SU(3) and quarks should correspond to this type of resonance. If D is 
related to the strong force, we should have KD < 0, ideally constant (if related to asymptotic freedom). 

Hence the resonance concept used implies three symmetries that we must identify to the known ones; but here in 
the best case, the symmetries are the resonance geometry and do not need to originate in separate fields. The 
equation has 6 degrees of freedom and this is sufficient to assess the leptons and the bosons masses separately, but 
not necessarily the quarks; one of the main tasks in computing the mass spectrum is to reduce this number.  

2.2 Particles Resonances 

2.2.1 Leptons  

The Table 1 shows charged leptons resonances. We find very small numbers (N = P, and K) and a regular pattern.  

Table 1. Electrons, muon, tau. (*) MeV/c2 

Particle P N K Computed (*) Measured (*)

Electron 2 2 2 0.510 998 9280 0.510 998 928 (11) 

Muon 5 5 3 105.658 37150 105.658 3715 (35)

Tau 9 9 5 1776.840 1776.82 (16)
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Parameters are hereafter and will be used as constraints for the other particles groups:  

 μ = 241.676611 eV; De = 0.00085322189 L; X = 8.145121041623 KeV L3 (2.1) 

(L = lengths natural unit.)  

Using α, the fine structure constant, we define a new constant that will be later used:  

 AS
 = De/α = 0.1169221145 (2.2) 

The name AS is chosen for its value is reminiscent of the strong force coupling and the position of D in the equation 
is also reminiscent of the strong force. It is easy to guess: 

 αS(MZ) = AS (1 + α √3) = 0.118399 (2.3) 

where the term √3 is geometrical; α is the fine structure constant which, together with the interaction scale MZ will 
be discussed in the following sections. 

2.2.2 Quarks  

Table 2 shows the resonance numbers we found for quarks, where masses are coherently expressed in the natural 
scheme. A regular pattern is obvious. One parameter is changed to compute this table: 

 Dq = De (1 + α) (3) 

It shows a connection between De and αS (without which the top quark mass is computed around 167 GeV). The 
constancy of K = –6 is reminiscent of asymptotic freedom.  

 

Table 2. Quarks resonances. (*) MeV/c2, Top = direct measurement – (1) CMS (2014b). See also: The ATLAS, 
CDF, CMS and D0 Collaborations (2013). 

Particle Charge P N K Computed (*) Estimate (*) 

Up 2/3 3 2  –6 1.93  1.7 – 3.1 

Down 1/3 3 19/7 –6 5.00 4.1 – 5.7  

Strange 1/3 3 7 –6 106.4 80 – 130 

Charm 2/3 3 14 –6 1,255 1180 – 1340 

Bottom 1/3 3 19 –6 4,285 4130 – 4370 

Top 2/3 3 38 –6 172,380 172,040 ±190 ±750 (1) 

 

We get N ≠ P in Table 2, as expected for quarks. It is trivial to verify the expected approximate relations with NP π, 
from which it is evident that the integral numbers in Table 2 are not random but geometrical.  

For the down quark we get a fraction N = 19/7 which is not acceptable. The point will be discussed later with the 
CKM matrix and we shall see that it comes from mixing. Still we notice that all variable numbers come from 2, 7, 
and 19 and the ratio 2 within generations is the ratio of electric charge; it suggests a unique geometry. 

2.2.3 Massive Bosons  

The remaining resonance mode is doubly circular, then compatible with N = P. Using the SM we must naturally 
assume that the W±, Z0 and H0 acquire their masses from the same potential; using (1), it should correspond to the 
same resonance and coefficients, that is N = P = constant, and only K varies.  

As mentioned before, an important aspect in this resonance mode is that equation (1) is modified:  m = μ + Xk	π	(1/NP + 	K	D)ଷ 																																																																	(1. b) 
The factor π at the denominator is needed since the resonances is supposed circular, but we do not find a good fit; 
we need a factor k ≈ 1, another degree of freedom that will be removed.  

The next reasoning is long (for details, refer to Consiglio, 2014b), and it shows that Db is an interaction term on 
which k depends thru the following geometrical equation that connects the resonant “slots” in two hyper-spheres: 

 k3 π/144 = 266 Db (π/k)1/3 (4) 
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The interaction is decrypted in the same reasoning (and paper) and gives distinct terms in Db for the W±, Z0, or H0:  

 DWZ = α2 (1/(1 + α2) + AS/2(1 – α2) – AS
2/6(1 + α2)) = 5.62404904 10–5 (5.1) 

 DH = α2 (1/(1 + α2) + AS/2(1 – α2) – AS
2/(1 + α2)) = 5.56338664 10–5 (5.2) 

Note that only the last term is different by a factor 6 between those expressions. Note also that the bosons widths 
are computed (Consiglio, 2014b, 2015) from the resonance geometry using the same difference. 

Then the equation (4) gives the coefficients k with which the bosons masses are computed: 

 kWZ = 1.00128565; kH = 0. 998033312  (6) 

It gives Table 3, where the coefficient X is unchanged (masses in natural scheme). 

 

Table 3. Predicted Bosons Masses (*) MeV/c2. (2) ATLAS-CMS (2015); see also ATLAS (2014), CMS (2014a) 

Particle P N K NP Computed (*) Measured (*)  SM Prediction (*) 

W± 12 12 –2 144 80,384.859 80,385 ±15 80,363 ±20 

Z0 12 12 –7 144 91,187.560 91,187.6 ±2.1 91,187.4 ±2.1 

H0 12 12 –19 144 125,206.552 125,090 ±240(2) None 

 

2.3 Remarks 

Finally, taking into account the reasoning to (4 – 5 – 6), and understanding that the bosons N and P (= 12 = 19 – 7) 
and the shift K (= –2, –7, –19) address the same geometry as quarks, there is no remaining degree of freedom in the 
calculus of Table 3 (X and AS are computed from leptons, quarks give the other interaction term α, and the factor 6 
in (5.2) comes from the difference in compositeness between bosons). Hence the theory relates to a single field 
“below” and it is fundamental that all results are based on charge currents, making neutral currents composite.  

3. What is the H0? 

3.1 Scary Coincidences 

The results in section 2 show that the H0 gets its mass from the same geometry as the other massive bosons, which 
is not anticipated by the standard theory. It is neutral, like the Z0, and then its mass should be related to the W± mass 
and the Weinberg angle θW. Using the bosons masses in Table 3 (or experimental data) we notice: cos	(θ୛) = M୛M୞ → θ୛ = 0.4916965	rad ≈ 12 rad																																															(9.1) 
A similar relation using 2 θW for the Higgs would give MH ≈ 100 GeV which we know is wrong. Then, paralleling, 
we define an angle θH as follows: tan	(θୌ) = MୌM୛ → θୌ = 1.0000533	rad ≈ 1	rad																																															(9.2) 
Here we begin to guess that the electroweak theory is incomplete; representing those angles on the bosons plane 
gives Figure 1 (which is outlaw in electroweak theory) and suggests that the Higgs is a doubled Z0 with opposite 
rotation and currents (like the W+ versus W–).  

 

 

Figure 1: Representing the H0 mass on the bosons plane  
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In electroweak parlance, using (9.1) we have: 

 ቂ γZ଴ቃ ≈ 	 ቎ cos ቀଵଶቁ sin ቀଵଶቁ− sin ቀଵଶቁ cos ቀଵଶቁ቏ ቂ B଴W଴ቃ  (10) 

Using (9.2) and trigonometry, we get the sum of ratios of the B0 and W0 components of the γ and Z0 respectively, 
and following (10) the probable signature of an incomplete theory is difficult to ignore: 

 
ଶ	୑౓୑ౄ ≈ cot ቀଵଶቁ – tan ቀଵଶቁ																																																																								(11.1) 

But those equalities are approximate; then we better write (9.1 – 9.2) in a manner that addresses the figure, and 
we estimate angular deviations terms with respect to 1/2 and 1 radian (still using Table 3): M୛ = M୞ × cos ൬12 − α − 6π	αଶ൰																																																														(12.1) Mୌ = M୛ × tan൫1 + αଶ(1 − α − 3π	αଶ)൯																																																					(12.2) 
Precision is now 2.6 10–8 in (12.1) and 1.6 10–8 in (12.2) with respect to the masses computed in Table 3. Hence the 
coincidence is also evident in the deviation terms.  

Using the H0 mass and a “separate” scalar field, the SM implies fine tuning from which the universe does not make 
sense. Here we find a single field “below” and we guess that the standard theory is incomplete, because it does not 
gives sense to experimental data. 

3.2 Consequences 

The relatively small mass of the H0 can be seen consistent in two manners, firstly from the resonances (which also 
explain why the angles are not exactly 1/2 and 1 radian), and secondly from the coincidences in (9 – 12) as it 
suggests an incomplete theory. It is an electroweak boson that acquires its mass in the same manner as the others; 
it shows that all bosons masses are the same consequences of symmetry breaking – which, for the Higgs, is in 
contradiction with the SM where it is the boson of a separate field. It first eliminates quadratic divergences; since 
the H0 is not the true “native” boson of a scalar field, those contributions to its mass are irrelevant – in principle, 
and independently of its decay widths.  

But then the H0 is a “usual” vector boson; what force does it mediate? From (9 – 11) and also using the toy model 
depicted in the next section, it looks like two opposite Z0. It is then a natural candidate to mediate the absorber 
process that includes an advanced and a retarded wave. But the mediated particle may also have long range effects 
and the only missing force in the SM is gravitation; but it implies a non-standard (non-bosonic) graviton. Hence the 
reason why it couples in mass, if experimentally confirmed, is not trivial at all; it might even be double. It leads to 
conjecture that the long-range gravitational force is residual as it may explain the difference in strengths between 
gravitation and the weak force. Now let us go back to the main subject. 

4. A Toy Model and a Map 

Before discussing the other SM parameters we must, as a minimum, picture the field in a coherent manner. 

4.1 Modeling Currents 

In our views, the electroweak theory cannot hold in its present state because it is based on the existence of neutral 
currents: The terms in (5) mean that all fundamental currents are charged and implies definite quanta. It leads to the 
toy model presented hereafter which was first studied (Consiglio, 2014b) for massive particles. 

We first represent currents; they have a sign (+ and –) and a direction:  

- Vertical arrows ↑, ↓ represent time-currents, up and down respectively (fractional electric charges);  
- Oblique arrows ↗, ↙ are space currents, a-priori on the light cone, but causal and anti-causal. 

We must now set a-priori rules for assembling currents. They are:  

- R1: Time-currents can assemble in all possible ways that give known massive particles. 
- R2: Mass and wave emerge from the interaction of space and time-currents.  
- R3: Neutral currents are composite. 

Implicitly, the apparent charge depends on the current time-direction (like in Dirac’s hole theory). A negative 
electric charge is given by ↑– for –2/3 or by ↓+ for –1/3. (Note the + and – as upper and lower indices.)  
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Massive particles are depicted as follows (invert signs for antiparticles where needed): 

- Quarks: t+: [↑+↓–↑
–↓+↑

+]; b–: [↓+↑
–↑+]; c+: [↑+↓–↓+]; s–: [↓+] (u and d are supposed mixes). 

- Leptons: e–: [↑–↓+]; μ–: [↑–↓+↑
–↑+]; τ–: [↑–↓+↓–↓+]. 

- Bosons: Z0 can be: [↑+↑–] or [↓+↓–]; W±: [↑+↓–] and [↑–↓+]; H0: [↑+↑–↓+↓–]. 

Note that the H0 is depicted simultaneously as a double Z0 and the sum of a W+ and W–. It is then coherent with the 
Figure 1 and the coincidence in (11) and (12.2) simultaneously. 

Some important properties of this model are coherent (Consiglio, 2014b), in particular for quarks and leptons 
decays, its impact on the equations (5), and to compute the bosons widths; the leptons model was used (Consiglio, 
2015) to compute their magnetic moment anomaly. So even as a simplified view it should be taken seriously. 

Massless particles are depicted as follow (also presented before but modified here to for the “absorber” particle). 

- Photon: [↗+↙+], or [↗–↙–] (will not be used). 

- Neutrino: [↗+↗–], or [↙+↙–]. 

- Absorber: [↗+↗–↙+↙–]. 

- Color basis, the triplet {[↗+], [↙–], [↗–↙+]} fits with the arithmetic (the demonstration is trivial since 
[↗+↙+] and [↗–↙–] are color neutral). 

4.2 Picturing the Field Structure 

It can be shown easily that all resonance numbers come from 2, 3, 7, and 19 as sums and products. It was shown 
(Consiglio, 2015) that the number 37 is also part of the game. Then those numbers address the fundamental field 
structure: 7, 19, and 37 are centered hexagonal numbers and 61 is the next one – it is also the full SM particles 
count, but we find neither 37 nor 61 in the resonances. Then in Figure 2, we picture the core field (19 fundamental 
states) from which we assume that 42 (= 61 – 19) SM states are mixes. The hexagonal ring structure gives the 
resonance numbers, and the proposed organization is based on charge continuity and resonance “sectors” (brackets 
on the figure) where the connection is trivial. One first puts leptons and bosons around the symmetry of electricity; 
then we add 4 objects (T, B, C, S) which complement the external layer (named, on purpose, after four SM flavor 
numbers usually denoted T, B’, C, S). The 42 other SM states constitute the external layers (rings 37 and 61); they 
are assumed mixed states of (T, B, C, S), which resonances are the same as four quarks (t, b, c, s). This assumption 
is shown valid in the next sections as we find direct relations between the four quarks resonances and the CKM and 
PMNS matrices. 

 

 
Figure 2. Core field structure, from charge (left half) and resonance (right half) 

 

5. Other Objects and SM Parameters 

5.1 The Fine Structure Constant  

The fine structure constant was found to be a pseudo-norm in leptons resonances. The reasoning is long and will 
not be repeated here. In short, understanding how to compute the leptons magnetic moment anomaly from Table 1 
and special relativity leads to guess a second view on the leptons resonances obeying the same equation and a mass 
μ’ ≈ μ π/2 ≈ 380 eV; best fit around this value gives Table 4. 
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Table 4. Second view on leptons resonance. (*) MeV/c2 

Particle P’ N’ K’ Computed (*) Measured (*) 

Electron 2 2 2 0.510 998 9280 0.510 998 928 (11) 

Muon 3 8 3 105.658 37150 105.658 3715 (35) 

Tau 4 16 4 1776.840 1776.82 (16) 

 

Parameters are quite different: 

 μ′ = 	385.674928957eV/cଶ; 	D′ = 0.0002255984538; 	X′ = 8.02160767375101	KeV/cଶ	 (13) 

Here it is interesting to look at all distinct integral N and P in Tables 1, 2, 3, and 4 as their sum gives 137 – a 
well-known number which here is just the sum of all resonances. Then 137 as a prime number cannot split as a 
product, but it effectively splits as a sum. We interpret this number as directly related to the fundamental currents 
or currents ratio.  

Now (still in short) since in Table 4 all N’s are harmonics, and since we find N’(τ) = N’(e) N’(μ) and P’ = K’, we 
have a unique currents path; together with the fundamental current or ratio 137 it gives a pseudo-norm which is the 
fine structure constant: 

αିଵ = ඨ137ଶ + πଶ − ൬ 1137൰ ൬12 + 18൰ 	→ 	α = 72	973	525	697.9 × 10ିଵଷ																														(14) 
Where CODATA gives: 

 α = 72	973	525	698	(24) × 10ିଵଷ (15) 

Hence α is right there in the geometry of leptons resonance. At this point, it looks like we have “decoded” the 
electroweak sector parameters since all (in their standard expressions and using the SM) can be computed from the 
weak bosons masses and the fine structure constant, including the Higgs field v.e.v. 

5.2 The Cabibbo-Kobayashi-Maskawa (CKM) Matrix 

Now let us discuss the main missing group of quarks parameters; that is the CKM matrix in Table 5. 

 

Table 5. The Cabibbo-Kobayashi-Maskawa (CKM) matrix (Particle Data Group, 2014).  

Vud = 0.97427 (14) Vus = 0.22536 (61) Vub = 0.00355 (15) 

Vcd = 0.22522 (61) Vcs = 0.97343 (15) Vcb = 0.0414 (12) 

Vtd = 0.00886 (32) Vts = 0.0405 (11) Vtb = 0.99914 (5) 

(Uncertainty is minimized, taking the smallest value when non-symmetrical). 

 

In the equation (1) the mass of a quark q depends on a radius Rq = (1/3N – 6 Dq), which actually defines a potential 
from a single variable N. Hence the quarks decay probabilities should depend on those radiuses or potentials. The 
second aspect is that between potential wells, we must have different hills which depend on the field structure. Last, 
using the field map, the quarks field is defined by four objects. Hence widths depend on the Rq, on some mixing, 
and simultaneously some numbers related to the field geometry. This is many degrees of freedom, but fortunately 
the matrix is not quite complex and the problem is limited by the quarks resonances. Looking at Table 3 we remark 
that the d and u naturally come as ratios from which we assume the form of the mixing: 

 N(u)	=	2	=	N(t)/N(b)	=	N(c)/N(s) (16.1) 

 N(d)	=	19/7	=	N(t)/N(c)	=	N(b)/N(s) (16.2) 

where N(q) denotes the resonance number N of the quark q. Now the presence of a fraction (19/7) for the down is 
not a problem but rather insightful, and N(u) = 2 as well since it is simultaneously a ratio of resonances and the 
ratio of electric charges within the 2nd and 3rd generations. Hence with respect to the field map and (16), it is 
legitimate to assume that only the u and d are mixes. 
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5.2.1 Computing Coefficients 

Then let start with the top quark decays as it should only depend on field numbers and on the radiuses Rd, Rs, Rb. 
We define a function ft which defines squared ratios with respect to the sum of all potentials, it is:  

 ft(q)	=	Rq2/(Rd	+	Rs	+	Rb)2 (17.1) 

Now the numerical coincidence with the decay widths is easy to find (the numerical results are in Table 6): 

 Vtb2	=	1	–	ft(b)/3 (17.2) 

 Vts2	=	ft(s)/37 (17.3) 

 Vtd2	=	ft(d)×π/1372 (17.4) 

where, comparing (17) to the central values in Table 5, the ratio “Error in (17)/Standard Uncertainty” is lesser than 
3 10–2 for Vtb and Vts, and 10–1 for Vtd. The second heaviest quark is the b, for which we use a similar function fb 
that does not takes the t into account as we want to compute only two points in the right-hand column of the matrix: 

 fb(q)	=	Rq2/(Ru	+	Rc)2 (18.1) 

From which we find:  

 Vub2	=	fb(u)/(π×1372) (18.2) 

 Vcb2	=	fb(c)/2π  (18.3) 

The precision obtained for Vcb is in the same range as for the top quark decays, but it is barely in the standard 
uncertainty range for Vub. Together with the error in Vtd, this is expected since only the u and d are assumed mixed 
states. Here we need empirical corrections for those coefficients; the following holds: 

 Vtd2	=	ft(d)×(π/1372)×(1	+	1/137) (19.1) 

 Vub2	=	fb(u)×(1	–	1/14)/(π	×	1372) (19.2) 

Now back to the mix in (16); except for some ad hoc coefficient, a ratio of resonances is a product of lengths, and 
then in order to compute coefficients we just need symmetric expressions that sum lengths products, and the 
mixing form in (16) leaves no choice. We define in (20) two corresponding quantities: 

 A	=	(Rb	Rc)	+	(Rt	Rs)  (20.1) 

 B	=	(Rt	Rb)	+	(Rc	Rs) (20.2) 

Now compute the following expression, where the ad hoc coefficient cancels: tanିଵ((A/B)/2) = 12.94୭																																																																(20.3) 
The Cabibbo angle is θC ≈ 13.02o, the difference with (20.3) is –0.08 degrees (≈ 0.6%). The factor 2 can be 
explained if the physical coupling point is halfway thru the mixes A and B. Last we find empirical corrections to 
(20.3) which are mixes of the corrections in (19) in form and coefficients: tanିଵ((A/2B) × (1 + (1/137) × (1– 1/14))) = 13.025୭ = cosିଵ(Vud) = sinିଵ(Vus)									(21.1) tanିଵ((A/2B) × (1 + (1/137) × (1	– 1/7))) = 13.019୭ = sinିଵ(Vcd)																							(21.2) tanିଵ((A/2B) × (1 + (3/137) × (1 + 1/14))) = 13.234୭ = sinିଵ(Vcs)																					(21.3) 
Using the angles in (21) and (17.2, 17.3, 18.2, 19.1, 19.2) gives precision as shown in Table 6, where the numbers 
in parenthesis are the error with respect to the central value in Table 5. 

 

Table 6. Resulting CKM matrix 

Vud = 0.97427 (0)  Vus = 0.22538 (+2)  Vub = 0.00356 (+1)  

Vcd = 0.22527 (+5)  Vcs = 0.97344 (1)  Vcb = 0.0413 (–1)  

Vtd = 0.00886 (0) Vts = 0.0405 (0) Vtb = 0.99914 (0) 

 

The matrix normalization holds at better than 10–5.  
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Note that removing the coefficients 1/7 and 1/14 in (21) leaves all Vij within 20% of the uncertainty range. 
Importantly, the appropriate coefficient might not be 1/137 ≈ α and 1/14 ≈ 3π α but similar to the corrections used 
for θW (12.1) and θH (12.2). 

Now out of the SM parameters related to quarks, and assuming AS is related to αS, we miss only the QCD vacuum 
angle which is ~0 but the overall picture is coherent with a single field; hence this parameter might not exist and be 
an excess of generality of the QCD theory. The same remark obviously applies to the standard CKM 
parameterization.  

The Table 7 summarizes the main coefficients (without corrections) and mixings from T, B, C, and S.  

 

Table 7. Mixing and main coefficients 

T/B, C/S ↔T/C, B/S   T/B, C/S ↔ S  T/B, C/S ↔ B (1/π×1372)  

C ↔ T/C, B/S  C ↔ S  C ↔ B (1/2π)  

T ↔ T/C, B/S (π/1372) T ↔ S (1/37) T ↔ B (1/3) 

 

The Cabibbo angle links together two un-mixed states (c to s). It should then be possible to compute Vcs in a 
manner similar to the coefficients on the t row and the b column. Hence we define: 

 fc(q)	=	Rq2/(Rs	+	Rd)2  

And we empirically find: 

 Vcs2	=	1	–	fc(s)	×	(3/4)	×	(1	–	(1/137)	×	(1	–	1/7))	=	(0.97344)2  

 Vcd2	=	(fc(d)/π2)	×	(1	–	(1/4)(1/π	–	1/37))	=	(0.22522)2  

Using those numbers, the full matrix can be completed without the use of the Cabibbo angle, with similar precision 
as Table 6. A similar exercise with Vcs and Vus is redundant but also gives good results. The interest of this 
approach is homogeneity in method, but also that the same numbers appear in the correction terms (even though it 
becomes a little far-fetched). It is numerically equivalent to the Cabibbo angle, but the latter seems physically more 
elegant and complete. 

5.2.3 Picturing the Quarks Field 

The Figures 3 shows how quarks are produced on rings 37 and 61 from T, B, C, S. (Each quark is represented by a 
circle that symbolizes 3 color states and spans over two hexagons.) Essentially, we find that only two quarks are 
mixes of the four others. This figure is, on purpose, reminiscent of the dissymmetry of matter and anti-matter; it 
suggests that the mixing dissymmetry effects exceed those expected with the standard model, and the dissymmetry 
does not require a different amount of positive and negative fundamental objects (T, B, C, S) to be created. 

 

    
Figure 3. No mixing for t, b, c, and s quarks (left). Mixing to the u and d quarks (right).  
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5.3 The Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix 

Now let us see how the quarks mixing logic can be extended to neutrinos. We will discuss the PMNS matrix square 
elements as shown in Table 7; it is computed from the Particles Data Group (2014) ignoring the CP violating 
phase. 

 

Table 8. The squared PMNS matrix. (Uncertainty is in the range 1 – 2%.) 

Ue1
2 = 0.6818 Ue2

2 = 0.2955 Ue3
2 =0.0227 

Uμ1
2 = 0.3077 Uμ2

2 = 0.6906 Uμ3
2 = 0.0017 

Uτ1
2 = 0.0105 Uτ2

2 = 0.0139 Uτ3
2 = 0.9756 

 

We first notice a pattern similar to the CKM matrix where most of the mixing is in the up-left corner.  cosିଵ(Uୣଵ) = 34.34୭																																																																										(22.1) sinିଵ(Uୣଶ) = 32.93୭																																																																										(22.2) sinିଵ(Uஜଵ) = 33.69୭																																																																										(22.3) cosିଵ(Uஜଶ) = 33.80୭																																																																										(22.4) 
The difference is small compared to the matrix elements precision, and denotes a large almost equal mixing in 
electrons and muon neutrinos. Then we guess mixes and correction similar to the CKM for this part of the matrix. 
The mixing angle should be the arc-tangent of a ratio of lengths products; its resonance must be 1 and neutrinos are 
electrically neutral. Mixes are assumed from the same objects as the u and d quarks; then the resonances and 
electric neutrality leave no choice since N(t) N(s)/N(b) N(c) = 1 is minimal; now compute: tanିଵ ൬R୲RୱRୠRୡ൰ = 33.6	୭																																																																								(23) 
which agrees with (22); but it works at the opposite of quarks mixing where a product of resonances gives a ratio of 
lengths; in (23), it corresponds to a product. This point is of high importance, firstly as it will be systematic in this 
section, and secondly as it implies the existence of an unexpected form of symmetry.  

Now empirical corrections come in close agreement with (22); as follows: tanିଵ ൭R୲RୱRୠRୡ × ൬1 + 4137൰൱ = 34.36୭ → Uୣଵ																																																		(24.1) 
tanିଵ ൭R୲RୱRୠRୡ × ൬1 − 7274൰൱ = 32.92୭ → Uୣଶ																																																		(24.2) 
tanିଵ ൭R୲RୱRୠRୡ × ൬1 + 1274൰൱ = 33.70୭ → Uஜଵ																																																		(24.3) 
tanିଵ ൭R୲RୱRୠRୡ × ൬1 + 1137൰൱ = 33.79୭ → Uஜଶ																																																		(24.4) 

In the CKM matrix the T has a special role that should also be in the PMNS matrix. But (23 – 24) include the 
product Rs Rt. Then the S inherits of an anti-special role with respect to the T (where B and C are not affected). On 
this basis, we easily find role-symmetry agreeing solutions giving the squared matrix elements. Bottom row: 1 − R୲2(Rୠ + Rୡ + Rୱ) = 0.97541 = Uதଷଶ 																																																								(25.1) Rୡ42	Rୱ = 0.01046 = Uதଵଶ 																																																																					(25.2) Rୠ21	Rୱ = 0.01389 = Uதଶଶ 																																																																					(25.3) 
The equation (25.1) shows that the product of resonances is not symmetrical (and can be written in many manners); 
its form is similar to the function ft(q) in (16.1) but based on reversed lengths– versus squared lengths or potentials.  
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The right-hand column shows a direct symmetry with (25.2 – 25.3): ൬ Rୡ42	Rୱ + Rୠ21	Rୱ൰ ൬1 − 114൰ = 0.02261 = Uୣଷଶ 																																																		(25.4) ൬ Rୡ42	Rୱ + Rୠ21	Rୱ൰ ൬ 114൰ = 0.001738 = Uஜଷଶ 																																																				(25.5) 
Interestingly, the coefficients 21 and 42 are multiples of 7 and the products NP of the s and c respectively; we also 
notice the recurrence of 7 which is the charged leptons ring and the Z0 boson’s K. Once again, the correction terms 
1/137 ≈ α and 1/14 ≈ 3π α may actually be the same as in (12.1 – 12.2). 

Using (24 - 25) gives appropriate results and the squared matrix normalization error is 5.4 10–4. The absolute error 
on the individual squared matrix elements with respect to Table 8 is lesser than 4 10–4 as shown in Table 9.  

 

Table 9. Computed PNMS squared matrix. 

Ue1
2 = 0.6814 (–4) Ue2

2 = 0.2954 (–1) Ue3
2 =0.0226 (–1) 

Uμ1
2 = 0.3078 (1) Uμ2

2 = 0.6907 (1) Uμ3
2 = 0.0017 (0) 

Uτ1
2 = 0.0105 (0) Uτ2

2 = 0.0139 (0) Uτ3
2 = 0.9754 (–2) 

 

Compared to quarks, the mixing mechanism is different but based on the same lengths and objects; the numerical 
results are important evidences and it shows that the inferred core field is relevant. Moreover the same 
dissymmetry seems to exist as for quarks since we find the same corrections terms 1/14 in (25) and 1/137 in (24).  

We shall not venture discuss neutrinos mass (Majorna or not), since mixing and oscillation appear related to an 
inversion of geometry or, as we shall discuss later, an inversion of dimensionality: For the neutrinos matrix, 
N(t)N(s)/N(b)N(c) gives the ratio Rt Rs/Rb Rc where for quarks N(t)/N(b) gives the product Rt Rb. A Majorna 
neutrino would leave room for a new particle (and matrix) in the sum to 61; a standard neutrino would imply that 
the mass (and possibly gravitational) interaction comes from a specific unknown neutrinos interaction.  

Taking the inversion into account, the Figure 4 pictures neutrinos mix from ring 19; this is logically the electron 
and muon cases (with opposite inversions). The tau neutrino uses the same objects, but according to (25.1) it 
should be organized differently with identical roles for B, C, S, and a different role for T. 

 

  
Figure 4. Neutrinos mixing – (logically the electron and muon neutrinos cases) 

 

5.4 Gluons 

Eight gluons must replace the eight objects and anti-objects (T, B, C, S) in the sum 61 as they are already 
accounted for as quarks. They should be defined with resonances =1 from T, B, C, and S, with the missing mixes, 
even though this is probably not complete since gluons and anti-gluons are pictured as the same objects appearing 
oppositely to quarks and anti-quarks (plane geometry comes short); that is T+T–, T–T+, B+B–, etc...  
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This is presented in Figure 5, which is incomplete since a geometrical inversion should also be there (e.g. N(t)/N(t) 
→ Rt/Rt = 1 ~ constant coupling). 

 

  

Figure 5. Gluons 

 

6. Definite Naturalness 

6.1 Status 

The Table 10 shows the dependence of the SM (free) parameters on the results in this paper or the references.  

 

Table 10. List of SM parameters and their status 

SM parameter Compute from Status 

Leptons α Quarks Masses Resonances Theory 

Higgs boson mass Resonances Theory 

Higgs field vev Bosons masses Theory 

g1, g2 Alpha, Weak bosons masses Theory 

CKM and PMNS Matrices Rq (t, b, c, s) Evidence 

g3 Alpha_S (De, α) Conjecture 

QCD vacuum phase Inexistent? Conjecture 

 

The next table shows a short list of open SM questions which are answered in this theory or logically conjectured. 

 

Table 11. Short list of important open points in the SM 

SM open point Solution Status 

Parameters origin? Yes Theory and Evidences 

Fourth generation? Yes Prediction: None 

EW and Gravitation? θH Conjecture 

Naturalness? Yes > 80%  

 

Note that the absence of 4th generation (Consiglio, 2014b) is general and comes from opposite limits of the 
equation (1) when applied to leptons (K D < 1/NP) and quarks (mq > 0, or Rq > 0).  

We emphasize that our theory comes from a unique idea (composite currents) and a single equation from which 
every result presented in this paper follows. Essentially, we showed that the resonance mechanism and equation 
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are coherent with all SM free parameters except the neutrinos CP violating phases which is out of reach at present, 
and the QCD vacuum phase and αS, for which we raise the following hypothesis: The strong force coupling, at MZ, 
is given by (2.3); the rationale for the scale MZ is that all masses are given by the inferred “absorber” which looks 
like a double-neutrino – hence a single interaction scale. Since the theory is consistent with a single field, we 
suggest that the QCD violating phase is inexistent and results from an excess of generality. 

6.2 Why Naturalness? 

The opposite question “why no naturalness” does not really need an answer; it is either un-natural and we can find 
many un-provable reasons (at first scary parameters) but a definite proof seems unlikely, or naturalness exists and 
requires progress. We possibly found “how” the universe is natural, but for a complete answer the question is also 
“why” since naturalness cannot be random. Our answer relates to self-encoding and self-coherence as both imply 
mathematical limitations or laws.  

Firstly, the structure we find shows that the field is self-encoded or self-defined. We mean that all characteristics 
are structural as we find a figure defining all states where all parameters seem to be included; it should also include 
the system of co-ordinates – since interaction is an essential part of the “code”.  

Lorentz transformation shows that for v > c, time becomes space and conversely (reference in Consiglio, 2014a) – 
but then this is the mirror used in the reasoning to equation (1) and it is a dimensional inversion. In this view it is 
logical that in field theory αS (~De/α + De√3) runs oppositely to α as De and α come in opposite positions in the 
equation (2.3); they can be seen to “run alike” in reversed dimensions. Incidentally, we must recall that the first 
task of quantum mechanics is to remove the de Broglie wave phase velocity from the concept and equations.  

With respect to dimensional inversion, de Broglie’s v → c2/v can be read r → 1/r and t → 1/t; accordingly, we 
compute from (14) a reversed pseudo-norm that speaks for itself: 

γିଵ = ඨ(8 + 2) × 137 − 1137ଶ − 1πଶ = 37.01214 

...since 37 is the centered hexagonal number following 7 and 19, and also the first mixing ring. The resonance of 
the top quark (N = 38) is the only one exceeding this number – and as we know the top is special, firstly in mass 
and observations but also for its role in the above analysis of the CKM and PMNS matrices. Moreover we use 
lengths to compute the CKM matrix and lengths and reverse lengths for the PMNS matrix; similarly, the Cabibbo 
angle computed in (20) is coherent with products of lengths giving ratios of resonances. At the opposite in (23) the 
products come as if space and time were inverted for half of the mixing objects. Next, the bosons’ K and quarks’ N 
are equal and agree with an inversion of geometry. Last, the distances De (2.1) and D’ (13) can easily be evaluated 
as pseudo-norms of the same form as α (14), where the core field integral numbers appear (with no artifact); the 
following expressions hold at better than 10–9 (relative error): 

Dୣିଵ = ඨ൫(7 − 3) × (274 + 19)൯ଶ + (3 + 3 + 1)πଶ − 19π19 − 1 

D′ିଵ = ඨ൫(19 − 3) × (274 + 3)൯ଶ + 2 × (274 + 19 + 1)πଶ − 33 − 1 

Hence, it looks like all results fit with an inversion of geometry or dimensionality, which (as far as we know) is 
unknown to existing theories but can be guessed already from de Broglie’s thesis and special relativity.  

Secondly, there should be a mathematical law limiting symmetries, which in turn must agree with or imply the 
hexagonal structure. Action implies reaction and the geometry of action/reaction is symmetry. This is always 
defined with sums and products, whatever the mathematical method used.  

The limiting mathematical law that makes sense with respect to the SM in its present state is Hurwitz theorem 
(Dickson, 1919). It shows that only four alternative algebras exist, and three are isomorphic to the SM symmetry 
groups: Complex numbers C ~ U(1), Quaternions H ~ SU(2), and Octonions O ~ SU(3); plus Real numbers R.  

Alternative algebra is defined by (x x) y = x (x y). We see in (x x) the self-interaction of a charge x, and the other 
products are interaction, including (x x) ↔ y and (x ↔ y). This equality is simply the action of the charge y on the 
self-interaction of the charge x, equal to the action on the charge x of the interaction of the charges x and y. It links 
interaction and self-interaction, and it is trivial that the existence of a law of this type is needed in absorber theory. 
It is firstly a law of coherence and conservation. But the physical existence of self-interaction as the product (x x) 
indicates that particles are extended structures, firstly because self-interacting points do not make physical sense.  
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Hence, considering Hurwitz theorem as a symmetry-limiting factor implies that the particle energy is an extended 
structure, like the equation (1) does.  

Finally, and reversing the logic: A self-coherent universe that can be modeled with sums and products of charges 
and where particles are non-punctual structures is limited to U(1), SU(2), and SU(3); it looks like the one we know.  

7. Conclusion 

Here we claim that the field is natural. Overall, we showed that at least 19 out of 23 SM parameters are coherent 
with each other, with the mass equation, and with the inferred field structure; one again, we emphasize that this 
result originates in a single idea and equation. 

Firstly, we showed that the elementary particles mass spectrum is coherent and can be modeled; it results in a 
coherent and predictive theory. The very possibility that particles mass is structured is barred in field theory. We 
argue that this approach is incomplete as far as mass is concerned, and then also interaction.  

Secondly, we showed that the Higgs boson seems much more important than suggested by the SM as it appears to 
call for more unification instead of a new separate field. We argue that the main gap to unification is that massive 
particles are composite of a charged current quantum.  

Thirdly, we showed that the CKM and PMNS matrices come in a direct manner from the radiuses Rq from which 
we compute the quarks masses. Hence we argue that the mass-resonance equation and its leading concept of 
charged currents are physical, and then key to model and understand the field.  

Addendum 

The manner we read the thermodynamics (the relation P V = KB T = μ c2 = constant) in the equation (1) is not 
trivial; it is even somehow counter-intuitive since the volume V is the same as in the reasoning to the equation. On 
this basis, the equation (1) reads: 

m c2 = KB T + X c2/(1/NP + KD)3 

where the temperature T corresponding to μ is constant and the right-hand term is interaction (the absorber). Now 
imagine the particle as a ball (the cage) with a single gas molecule inside. When the interaction splits, for instance 
when a muon decays to a neutrino and an electron, the radius of the electron ball Re = (1/4 + 2 De) is larger than that 
of a muon Rμ = (1/25 + 3 De); KB T is constant and only interaction changes. The molecule has a constant energy, 
but the compression of the ball depends on the inverse of the ball’s volume. Now, of course, we can reverse the ball 
like a glove and we get an inverted picture. It is not obvious to understand which one should be preferred if any, 
and geometrical or dimensional inversion suggests that both are appropriate.  

On the other hand, the constancy of μ = KB T is rather stunning (in particular with respect to the toy model); but it 
was shown consistent since the ratio X/μ is the basis enabling to compute the leptons magnetic moment anomaly 
(Consiglio, 2015). It turns-out from this calculus that μ is just the interaction of the time-currents together; and 
leptons are a 4D rotation of currents around a plane defined by the magnetic moment and the time axis. 

In the example above (electron and muon), it is natural to identify the rotation rate with the particle energy and 
frequency, that is E = h ν. Now both particles have the same intrinsic angular momentum h/2; but μ is constant and 
then the classical rotation radius is in reverse proportion of the particle frequency: It looks like the Compton 
wavelength and the difficulty, if any, is to imagine its dependence on a volume. 
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