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Abstract

In order to explain light curve (LC) for Supernova (SN) we derive a classical formula for the conversion of the
flux of kinetic energy into radiation. We then introduce a correction for the absorption adopting an optical depth
as function of the time. The developed framework allows to fit the LC of type Ia SN 2005cf ( B and V ) and type
IIp SN 2004A (B,V,I and R ). A relativistic formula for the flux of kinetic energy is also derived in terms of a
Taylor expansion and the application is done to the LC of GRB 050814. The decay of the radioactive isotopes as a
driver the LC for SNs is also reviewed and a new formulation is introduced. The Arnett’s formula for bolometric
luminosity is corrected for the optical depth and applied to SN 2001ay.

Keywords: supernovae: general, supernovae: individual (SN 2005cf), supernovae: individual (SN 2004A ), su-
pernovae: individual (SN 2001ay), supernovae: individual (SN 1993J )

1. Introduction

The term light curve (LC) for Supernova (SN) usually denotes the behavior of the apparent/absolute visual magni-
tude as function of the time. The development of the multiwavelength astronomy fixes the wavelength passband,
i.e BVRI, or the frequency ν, i.e. 15.2 GHz, or the energy, i.e. 1kev. Further on in gamma, X and radio astronomies
the flux or the count rate are recorded rather than the magnitude, see as an example Fong et al. (2012). The first
model to be considered is connected with the radioactive decay

L = Lλ,0 exp(− t
τn

) , (1)

where L and Lλ,0 are the luminosities at time t and at t = 0 respectively, λ is the considered wavelength and τn

is the typical lifetime, see Bowers and Deeming (1984). On introducing the apparent magnitude mλ, the previous
formula becomes

mλ = k′λ + 1.0857(
t
τn

) , (2)

where k′λ is a constant. The most important radioactive isotopes are 56Ni with τn = 8.757 d and 56Co with τn =

111.47 d. The analysis of many authors has shown that the decay of one of these two radioactive isotopes fit only
few days of a typical LC, see Smith and McCray (2007).

At the same time the spectral index in the radio of SN 1993J is constant after 700 days, see Figure 8 in Marti-Vidal
et al. (2011) and this observational fact points toward the presence of synchrotron emission having flux , F(ν) ∝ ν−α
with α ≈ 0.7. The hypothesis of the synchrotron emission in SNs is not new and we now report some applications
among others: GRBs, see Preece et al. (2002); Beniamini and Piran (2013); Burgess et al. (2014) and Supernovae
Remnants (SNRs), see Katsuda et al. (2010); Miceli et al. (2013). The presence of the synchrotron emission
makes attractive the analysis of a turbulent cascade from the large scale to the small scales where presumably the
relativistic electrons are accelerated. Insofar we have isolated two completely different physical mechanism for
the source of radiation in the LC: (i) the number of radioactive isotopes as function of the time, (ii) the flux of
mechanical kinetic energy which is the driver for the power injected in the turbulent cascade. The fact that the
spectral index in the optical regime varies considerably with the time points toward a variable optical thickness
as function of the time and of the considered pass-band. The basic idea is that the optical thickness is low at the
beginning of the LC and it increases its value with time. A series of questions can now be posed
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• Can we build a formula for the flux/magnitude versus time relationship in the framework of conversion of
the mechanical luminosity into radiation?

• Can we introduce the correction for variable optical thickness introducing a dependence of the optical thick-
ness with time?

• Can the new developed framework be applied to the various LCs which arise from the various typologies of
LCs such as type Ia, Ib, Ic or type IIb, II-L, II-p, IIn?

• Can the radioactive model in it’s various versions model the most common LCs?

2. Preliminaries

Here we first introduce an elementary equation of motion and then we assume a linear relationship between the
mechanical and the observed luminosity at a given frequency ν.

2.1 The Simplest Equation of Motion

The equation of the expansion of a SN in the first ten years can be modeled by a power law of the type

R(t) = R0(
t
t0

)α , (1)

where R is the radius of the expansion, t is the time, R0 is the radius at t = t0 and α is an exponent which can be
found from a numerical analysis. The velocity is

V(t) = αR0(
1
t0

)αt(α−1) . (2)

As an example in the case of SN1993J we have α = 0.828. The rate of transfer of mechanical energy, Lm is

Lm(t) =
1
2
ρ(t)4πR(t)2V(t)3 . (3)

We now assume that the density in front of the advancing expansion scale as

ρ(t) = ρ0(
R0

R
)d , (4)

where d is a parameter which allows to match the observations; this assumption is not new and as an example Nagy
et al. (2014) quotes d=3. The mechanical luminosity for the power law dependence of the radius becomes

Lm(t) = L0(
t
t0

)5α−dα−3 , (5)

where L0 is the luminosity at t = t0.

2.2 The Emitted Radiation

The energy fraction of the mechanical luminosity, Lν, deposited in the frequency ν is assumed to be proportional
to the mechanical luminosity through a constant ϵν

Lν = ϵνLm . (6)

The flux at frequency ν and distance D is

Fν =
ϵνLm

4πD2 . (7)

The problem of the absorption can be parametrized introducing a slab of optical thickness τnu. The emergent
intensity Iν after the entire slab is

Iν =
∫ τν

0
S νe−tdt , (8)

where S ν is a uniform source function. The integration gives

Iν = S ν(1 − e−τν ) , (9)
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see formula 1.30 in Rybicki and Lightman (1991). A first model for the optical thickness assumes a power law
dependence

τν = a1,νta2,ν , (10)

where a1,ν and a2,ν are two coefficients which can be found from the astronomical data. The flux corrected for
absorption in the power law case, Fν, is

Fν,c =
ϵνLm

4πD2 (1 − e−τν ) . (11)

An expression for the flux of the first model can be obtained inserting the simplest equation of motion for the R− t
dependence in the mechanical luminosity as given by (5)

Fν,c = Fν,0(
t
t0

)5α−dα−3(1 − e−τν ) , (12)

where Fν,0 is the flux a t = t0. This formula is useful when we have the flux versus the time, as an example Jansky
versus JD. The absolute/apparent magnitude version of for the first model is

m(t) =
2.5 ln (t)α d − 12.5α ln (t) + 7.5 ln (t) − 2.5 ln

(
1 − e−a1ta2

)
ln (2) + ln (5)

+ mk , (13)

where mk is a constant of calibration. This formula is useful when we have the absolute/apparent magnitude versus
time as in the case of optical LC in SN. The asymptotic approximation is

m(t) ∼ 1.085αd ln (t) − 5.428α ln (t) + 3.257 ln (t) + mk +
0.542(

e
a1

(t−1)a2

)2 . (14)

A second model for the optical thickness assumes an exponential law dependence

τν = a1,ν

(
1 − e−a2,ν ta3,ν

)
, (15)

where a1,ν, a2,ν and a3,ν are three coefficients which can be found from the astronomical data. The absolute/apparent
magnitude version for the second model is

m(t) =

2.5 ln (t)αd − 12.5α ln (t) + 7.5 ln (t) − 2.5 ln
(
1 − e

−a1,ν

(
1−e−a2,ν t

a3,ν
))

ln (2) + ln (5)
(16)

+mk .

A third model for the optical thickness makes a comparison between the observed intensity Iobs and the theoretical
intensity Ith through the optical depth

1 − e−τν =
Iobs

Ith
. (17)

The optical depth is

τν = − ln(1 − Iobs

Ith
) . (18)

The observed intensity as function of the time is an astronomical quantity and the theoretical intensity can be
the mechanical luminosity or the momentary number of radioactive isotopes. Once the temporal behavior of τν
is derived we search for the best fit as function of time. A fit already used is the power law fit as represented by
Equation (10). Another type of fit is the logarithmic polynomial approximation of degree M,

τν(t) = a0 + a1(ln(t)) + a2(ln(t))2 + · · · + aM(ln(t))M . (19)

The presence of the logarithm allows to cover the oscillatory behavior of τν over many decades in time.
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Figure 1. The V LC of SN 2005cf (empty stars) and theoretical curve as given by the first model, see Equation
(13) (full line).

Figure 2. The V LC of SN 2005cf (empty stars) and theoretical curve as given by the asymptotic formula (16),
(full line).

3. Astrophysical Results

The time is usually expressed in JD or seconds and a subtraction of the initial JD or seconds relative to the consid-
ered phenomena should be done in order to have zero at the beginning of the temporal scale. We start by analyzing
SN 2005cf in NGC 5812 which is of type Ia, it’s distance is 29.4 Mpc and the distance moduli µ = 32.51, see
Pastorello et al. (2007). Figure 1 reports the temporal evolution of the V visual magnitude of SN 2005cf for the
power law model as well the interpolating curve and Figure 2 the asymptotic approximation; data as in Table 1.

The quality of the fits is measured by the merit function χ2

χ2 =
∑

j

(mth − mobs)2 ,

where mth and mobs are the theoretical and observed magnitude, respectively.

Table 1. Numerical values of the adopted parameters and χ2 for the optical LC in SN in the case of optical
thickness with a power law dependence, α = 0.828 everywhere

Name SN band d a1 a2 mk χ2

SN 2005cf V 3.80 1.9 10−4 2.95 6.73 0.188
SN 2005cf B 3.85 1.98 10−4 3.2 7.11 6.7
SN 2004A V 4.15 1.0 10−4 4.15 5.33 12.4
SN 2004A B 3.52 2.6 10−3 1.85 9.53 2.50
SN 2004A I 4.33 2.0 10−5 2.65 3.4 0.35
SN 2004A R 4.05 7.8 10−5 2.3 4.81 1.10
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Table 2. Numerical values of the adopted parameters and χ2 for the optical LC in the case of optical thickness
with an exponential law dependence, α = 0.828 everywhere

Name SN band d a1 a2 a3 mk χ2

SN 2005cf V 3.79 10 1.75 10−5 3 6.73 0.202
SN 2005cf B 3.81 5 8.2 10−5 3 7.32 6.45
SN 2004A V 4.36 10 6.27 10−7 3 4.07 1.70
SN 2004A B 3.79 100 6 10−7 3 8.15 2.4
SN 2004A I 4.67 2.5 1.0 10−6 3.0 1.62 0.52
SN 2004A R 4.23 10 4.51 10−7 3 3.83 1.6

Figure 3. The (B–V) color evolution of SN 2005cf (empty stars) and the relative fitting straight line (full line).
The theoretical curve is given by the second model. The time is limited to the first 25 days.

The (B–V) color evolution of SN 2005cf for the exponential law model (data as in Table 2) is reported in Figure 3.

The SNs of type IIp are characterized by a flat LC for a long period of time, i.e. 100 days. We therefore analyzed
SN 2004A in NGC 6207 , which is of type IIp, the distance is 25.6 Mpc and the distance moduli µ = 31.99, see
Hendry et al. (2006); Tsvetkov (2008). Figure 4 reports the temporal evolution of the V visual magnitude of SN
2004A for the exponential law model as well the interpolating curve, data as in Table 2.

We now apply the developed theory to model the radio flux density of SN1993J at 15.2 GHz, see Pooley and Green
(1993); Ho et al. (1999), with data available at
http://www.mrao.cam.ac.uk/ dag/sn1993j.html . In this radio-case we plot the flux version of the first model as
given by Equation (12), see Figure 5 and Table 3.

Figure 4. The V LC of SN 2005cf (empty stars) and theoretical curve as given by the second model, see Equation
(17) (full line).
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Figure 5. The radio flux density of SN 1993J at 15.2 GHz (empty stars) and theoretical curve as given by the first
model, see Equation (12) (full line).

Table 3. Numerical values of the adopted parameters and χ2 for the radio LC in SN1993J and gamma LC in GRB
050814 in the case of optical thickness with a power law dependence, α = 0.828 everywhere

Name band d a1 a2 Fν,0 χ2

SN 1993J 15.2 GHz 2.22 8.5 10−4 1.86 1.64 7.9 10−4

GRB 050814 0.2-10 kev 2.79 0.026 1.259 8.3810−08 4.9 10−18

The theory is now applied to GRB 050814 at 0.3-10 kev in the time interval 10−5 − 3 days, see Jakobsson et al.
(2006) with data available at
http://www.swift.ac.uk/xrt curves/00150314/. Figure 6 reports the LC, in this case the flux, as function of the
elapsed time since Burst Alert Telescope (BAT) trigger and Table 3 reports the involved parameters.

Figure 6. The XRT flux of GRB 050814 at 0.2-10 kev (empty stars) and theoretical curve as given by the first
model, see Equation (12) (full line).

4. Relativistic Model

The density, ρ, of the ISM at a distance r from the SN is here modeled by a Lane–Emden (n = 5) profile

ρ(r; b) = ρc
1

(1 + r2

3b2 )5/2
, (20)

where b represents the scale. The relativistic conservation of momentum for the thin layer approximation in pres-
ence of a the Lane–Emden (n = 5) profile is given by the following differential equation

4 b3(r(t))3ρ π
√

3 d
dt r(t)

(3 b2 + (r(t))2)3/2c
√
− ( d

dt r(t))2

c2 + 1
=

4 b3r0
3ρ π
√

3β0

(3 b2 + r0
2)3/2

√
−β0

2 + 1
, (21)
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Table 4. Numerical values of the parameters used in relativistic solutions

parameters
t0 = 2−8 yr or t0 = 0.63 s ; r0 = 0.00195 pc ; β0 = 0.833 ; b = 0.004 pc

where r0 is the initial radius of the advancing sphere, v0 is the initial velocity at r0, c is the light velocity and
β0 =

v0
c . The relativistic transfer of energy through a surface, A, is

Lm,r = Aγ2(ρc2 + p)v , (22)

where p is the pressure, for sake of simplicity we take p=0, and the Lorentz factor γ is

γ =
1√

1 − β2dt
, (23)

see Equation A31 in De Young (2002) or Equation (43.44) in Mihalas and Mihalas (2013).

In the case of a spherical cold expansion

Lm,r = 4πr(t)2 1
1 − β(t)2 ρ(t)c

3β(t) . (24)

We now assume the following power law behavior for the density in the advancing thin layer

ρ(t) = ρ0(
t0
t

)d , (25)

and we obtain

Lm,r = 4πr(t)2 1
1 − β(t)2 ρ0(

t0
t

)dc3β(t) . (26)

We can now derive Lm,r in two ways: (i) from a numerical evaluation of r(t) and v(t), (ii) from a Taylor series of
Lm,r(t) of the type

Lm,r(t) =
3∑

n=0

an(t − t0)n . (27)

The coefficients are

a0 =
−4 π r0

2
( t0

t

)d
c3β0

β0
2−1

a1 =
4 π r0c4β0

2
( t0

t

)d(9 b2β0
2+3 b2−2 r0

2)
(3 b2+r0

2)(β0
2−1) (28)

a2 =
2 β0

3c5
( t0

t

)d
π (162 b4β0

4−297 b4β0
2−9 b2β0

2r0
2−45 b4+15 b2r0

2−2 r0
4)

(3 b2+r0
2)2(β0

2−1)

a3 =
18 (270 b2β0

6−675 b2β0
4−33 β0

4r0
2+480 b2β0

2+62 β0
2r0

2+45 b2−5 r0
2)β0

4b4c6π
( t0

t

)d

r0(27 b6+27 b4r0
2+9 b2r0

4+r0
6)(β0

2−1) .

Figure 7 compares the numerical solution for the luminosity and the series expansion for the luminosity about the
ordinary point t0.

The flux at frequency ν and distance D is

Fν,r =
ϵνLm,r

4πD2 . (29)

The flux corrected for absorption in the relativistic case is

Fν,c,r =
ϵνLm,r

4πD2 (1 − e−τν ) . (30)
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Figure 7. Numerical Lm,r computed according to Equation (26) (full line) and series solution as given by Equation
(27) (dotted line). Data as in Table 4.

Figure 8. The XRT flux of GRB 050814 at 0.2-10 kev (empty stars) and theoretical curve as given by the
relativistic numerical model, see Equation (30) (full line).

As a behavior for τν as function of time we select a logarithmic polynomial approximation, see (Equation 19),
of degree 9 and Figure 8 reports the flux of the relativistic LC as function of the elapsed time since Burst Alert
Telescope (BAT) trigger.

5. The Radioactive Model

Here we consider the decay of a radioactive isotope, a radioactive chain and the Arnett’s rule for the bolometric
luminosity.

5.1 Decay of one Element

The decay of a radioactive isotope is modeled by the following equation

−dN =
N
τn

dt , (31)

where τn is a constant and the negative sign indicates that dN is a reduction in the number of nuclei , see Yang
and Hamilton (2010). The integration of this differential equation of the first order in which the variables can be
separated gives:

N(t) = N0e−
t
τn , (32)

where N0 is the number of nuclei at t = 0. The half life is T1/2 = ln(2) τn. The absolute magnitude version of the
previous formula is

M = −C Log10(N(t)) = − t
τn
+ k , (33)

where M is the absolute luminosity, C and k are two constants. This means that we are waiting for a straight line
for the absolute magnitude versus time relationship. At the same time the observational fact that the spectral index

55



www.ccsenet.org/apr Applied Physics Research Vol. 7, No. 3; 2015

in the radio varies considerably but becomes constant, β ≈ −0.7, after ≈ 700 days, see Figure 8 in Marti-Vidal et
al. (2011), asks the absorption.

5.2 Radioactive Chains

The isotope 56Ni is unstable and decays (τ1 = 8.757 d, T1/2 =6.07 d) into 56Co emitting gamma photons. The
isotope 56Co is unstable and decays (τ2 = 111.47 d, T1/2 = 77.27 d) into 56Fe through electron capture and β-decay.
The decay rates of of the two species, species 1 is 56Ni and species 2 is 56Co, is modeled by the following equations

d
dt

N1 (t) = −N1 (t)
τ1

(34a)

d
dt

N2 (t) =
N1 (t)
τ1
− N2 (t)
τ2
. (34b)

The two solutions obtained inserting as initial conditions N1(0) = N0,1 and N2(0) = 0 are

N1 = N0,1e−
t
τ1 (35a)

N2 =

(
τ2N0,1

τ1 − τ2
e−

t
τ1
+ t
τ2 − τ2N0,1

τ1 − τ2

)
e−

t
τ2 . (35b)

The sum of the two species, N(t), is according to formula (8.5) in Rust et al. (2010)

N(t) = C1 N1(t) +C2 N2(t) , (36)

where C1 and C2 are two adjustable parameters. This linear sum is associated with the LC in SNs assuming that
the γ-rays are thermalized in the ejecta and emerge in the various bands. The logarithmic form,M(t) , is associated
with the magnitude evolution

M =
MN
MD

(37)

where

MN = k ln(2) + k ln(5) − ln(N0,1)

− ln(
1

τ1 − τ2
(C2τ2e−

t
τ2 e

t(τ1−τ2)
τ1τ2 +C1e−

t
τ1 τ1 −C1e−

t
τ1 τ2 −C2τ2e−

t
τ2 )) , (38)

where k is a constant and
Md = ln(2) + ln(5) . (39)

We plot the decay of the LC of SN 2001el, which is of type Ia, adopting a distance modulus of 31.65 mag, see
Krisciunas et al. (2003), the nuclear decay which according to equation (33) is a straight line, and the theoretical
curve of the two species as represented by equation 37, see Figure 9.

Figure 9. The V LC of SN2001el (empty stars) in absolute magnitude, the theoretical curve as given by equation
(33) when the radioactive decay of the isotope 56Ni (τn = 8.757 d or T1/2 =6.07 d , k=-18.65) was considered (full
line), and the theoretical curve, (dashed line), connected with the decay of two species as represented by Equation

(37) (τ1 = 8.767d, τ2 = 111.477d,N0,1 = 1, C1=1.9995, C2=1.0005 and k=-18.4)

56



www.ccsenet.org/apr Applied Physics Research Vol. 7, No. 3; 2015

5.3 Bolometric Luminosity

The bolometric LC after Arnett (1982), Arnett et al. (1985) has been associated with the combined radioactive
decays of the isotopes 56Ni and 56Co. A formula of practical use is given by

L(tR) = α
(
(6.45 × 1043)e−tR/8.8 + (1.45 × 1043)e−tR/111.3

) erg
s
, (40)

where tR is the elapsed time from the explosion to the maximum of the LC and α is ≈ 1, see formula (2) in
Krisciunas et al. (2011). The previous formula represents the optically thin case. According to the comparison
method developed in Section a corrected bolometric luminosity for the absorption, Lc(tR), is

Lc(tR) = L(tR) ×
(
1 − e−a1ta2

)
, (41)

and Figure 10 reports the comparison between observed and theoretical bolometric luminosity.

Figure 10. The bolometric LC of SN2001ay (empty stars) and the theoretical curve as given by Equation (41) (full
line). The parameters are tR=22 days , α = 1 and the comparison method with a power law fit gives a1 = 105.88
and a2 = −1.335. The astronomical data are extracted from Figure 18 in Krisciunas et al. (2011) by the author

6. Conclusions

Classical and relativistic flux of energy: The classical flux of kinetic energy can be easily parametrized in the case
of a radius-time relationship represented by a power law, see Equation (5). Conversely is more complex to derive
the relativistic flux of kinetic energy which requires a relativistic law of motion. In the framework of Lane–Emden
(n = 5) profile as given by Equation (20) and momentum conservation in a thin layer we can deduce an analytical
solution for the relativistic flux of energy in terms of a Taylor series, see the four coefficients in (28).

Light curve: Assuming a linear relationship between the luminosity in the various astronomical bands and the
classical or relativistic flux of mechanical kinetic energy we can easily deduce a theoretical time dependence for
the LC, see classical Equation (7) or relativistic Equation (27). This theoretical dependence is not enough and the
concept of optical depth should be introduced. Among the infinite relationships for optical depth as function of
time we selected a power law dependence, see Equation (10), an exponential behavior, see Equation (15), or a
logarithmic polynomial approximation, see Equation (19).

Nuclear Decay: The LC of a SN is often model by the decay of the radioactive isotope 56Ni, but in order to follow
the LC with time we should introduce a radioactive chain, see Equation (36). Further on some classical approach
to the bolometric luminosity must be corrected for the optical depth, see Equation (41).

Comparison with astronomical data: The framework of conversion of the classical flux of mechanical kinetic
energy into the various optical bands coupled with a time dependence for the optical depth allows to simulate the
various morphologies of the LC: for a type Ia we chosen SN 2005cf, see Figure 1 for V band and Figure 3 for
(B-V) color. The enigmatic behavior of type IIp SNs, here represented by SN2004A, can also be modeled, see
Figure 4 for the V band and Table 1 for B, I and R bands. The opposite sides of the electro-magnetic spectrum can
also be simulated: for the radio band of SN 1993J see Figure 5 and for the gamma/X spectrum of GRB 050814, see
Figure 6. More complex is the derivation of the relativistic flux of energy here parametrized by a series expansion.
The coupling of the previous series with a logarithmic polynomial approximation allows to model fine details such
as the oscillation in LC visible at ≈ 1000 s in GRB 050814, see Figure 8. All the fits here presented report the χ2,
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see Tables 1 and 2. This means that other types of functions for the optical depth versus time have a reference for
comparison.

References

Arnett, W. D. (1982). Type I supernovae. I - Analytic solutions for the early part of the light curve. The Astrophys-
ical Journal, 253, 785-797.

Arnett, W. D., Branch, D., & Wheeler, J. C. (1985). Hubble’s constant and exploding carbon-oxygen white dwarf
models for Type I supernovae. Nature, 314, 337.

Beniamini, P. & Piran, T. (2013). Constraints on the Synchrotron Emission Mechanism in Gamma-Ray Bursts. The
Astrophysical Journal, 769, 69.

Bowers, R. L. & Deeming, T. (1984). Astrophysics. I and II. Boston: Jones and Bartlett .

Burgess, J. M., Preece, R. D., Connaughton, V., Briggs, M. S., Goldstein, A., Bhat, P. N., Vianello, G. (2014).
Time-resolved Analysis of Fermi Gamma-Ray Bursts with Fast- and Slow-cooled Synchrotron Photon Mod-
els. The Astrophysical Journal, 784, 17.

De Young, D. S. (2002). The physics of extragalactic radio sources. Chicago: University of Chicago Press.

Fong, W., Berger, E., Margutti, R., Zauderer, B. A., & Troja, E. (2012). A Jet Break in the X-Ray Light Curve of
Short GRB 111020A: Implications for Energetics and Rates. The Astrophysical Journal, 756, 189.

Hendry, M. A., Smartt, S. J., Crockett, R. M., Maund, J. R., Gal-Yam, A., Moon, D.-S., Ostensen, R. (2006). SN
2004A: another Type II-P supernova with a red supergiant progenitor. MNRAS, 369, 1303-1320.

Ho, L. C., van Dyk, S. D., Pooley, G. G., Sramek, R. A., & Weiler, K. W. (1999). Discovery of Radio Outbursts in
the Active Nucleus of M81. The Astronomical Journal, 118, 843-852.

Jakobsson, P., Levan, A., & Fynbo, J. P. (2006). A mean redshift of 2.8 for Swift gamma-ray bursts. Astronomy &
Astrophysics, 447, 897-903.

Katsuda, S., Petre, R., Mori, K., Reynolds, S. P., Long, K. S., Winkler, P. F., & Tsunemi, H. (2010). Steady X-ray
Synchrotron Emission in the North-eastern Limb of SN 1006. The Astrophysical Journal, 723, 383-392.

Krisciunas, K., Li, W., Matheson, T., & Howell, D. A. (2011). The Most Slowly Declining Type Ia Supernova
2001ay. The Astronomical Journal, 142, 74.

Krisciunas, K., Suntzeff, N. B., Candia, P., Arenas, J., Espinoza, J., Gonzalez, D., Pizarro, S. (2003). Optical and
Infrared Photometry of the Nearby Type Ia Supernova 2001el. The Astronomical Journal, 125, 166-180.

Marti-Vidal, I., Marcaide, J. M., Alberdi, A., Guirado, J. C., Perez-Torres, M. A., & Ros, E. (2011). Radio emission
of SN1993J: the complete picture. II. Simultaneous fit of expansion and radio light curves. Astronomy &
Astrophysics, 526, A143.

Miceli, M., Bocchino, F., Decourchelle, A., Vink, J., Broersen, S., & Orlando, S. (2013). The shape of the cutoff
in the synchrotron emission of SN 1006 observed with XMM-Newton. Astronomy & Astrophysics, 556, A80.

Mihalas, D., & Mihalas, B. (2013). Foundations of Radiation Hydrodynamics. Dover Books on Physics, New York:
Dover Publications.

Nagy, A. P., Ordasi, A., Vinko, J., & Wheeler, J. C. (2014). A semi-analytical light curve model and its application
to type IIP supernovae. ArXiv e-prints.

Pastorello, A., Taubenberger, S., and et al (2007). ESC observations of SN 2005cf - I. Photometric evolution of a
normal Type Ia supernova. MNRAS, 376, 1301-1316.

Pooley, G. G., & Green, D. A. (1993). Ryle Telescope Observations of Super-nova 1993J at 15-GHZ - the First
115 Days. MNRAS, 264, L17.

Preece, R. D., Briggs, M. S., Giblin, T. W., Mallozzi, R. S., Pendleton, G. N., Paciesas, W. S., & Band, D. L.
(2002). On the Consistency of Gamma-Ray Burst Spectral Indices with the Synchrotron Shock Model. The
Astrophysical Journal, 581,1248-1255.

Rust, B. W., Oleary, D. P., & Mullen, K. M. (2010). Modelling type Ia supernova light curves. In Pereyra, V., &
Scherer, G. (Eds.), Exponential Data Fitting and Its Applications (pp. 169-186). Bentham Science Publishers.

58



www.ccsenet.org/apr Applied Physics Research Vol. 7, No. 3; 2015

Rybicki, G., & Lightman, A. (1991). Radiative Processes in Astrophysics. New-York: Wiley-Interscience.

Smith, N., & McCray, R. (2007). Shell-shocked Diffusion Model for the Light Curve of SN 2006gy. The Astro-
physical Journal, 671, L17-L20.

Tsvetkov, D. Y. (2008). Photometric Observations of Two Type II-P Super-novae: Normal SN II-P2004A and
Unusual SN 2004ek. Peremennye Zvezdy, 28, 3.

Yang, F., & Hamilton, J. H. (2010). Modern atomic and nuclear physics. Hack-ensack, USA: World Scientific.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

59


	First page
	Main document

