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Abstract 
The Poisson-Nernst-Planck equations are relevant in numerous electrobiochemical applications. In this paper, we 
provide analytical solutions to the steady state Poisson-Nernst-Planck (PNP) systems of equations for situations 
relevant to applications involving bioelectric dressings and bandages. The PNP system of equations is analyzed 
for two ionic species (one positively charged and the other negatively charged) both in the one-dimensional and 
two dimensional cases. The equations were formulated, non-dimensionalized, and an order of magnitude 
analysis was performed. Additionally, the method of singular perturbations was utilized in the two dimensional 
case. In the one-dimensional case, an exact solution is obtained while in the two-dimensional case an asymptotic 
solution is obtained. Both analytical solutions are compared with numerical solutions of the equations, and 
exhibit good agreement. The analytical solutions for the benchmark problems presented here are useful for 
verifying numerical solutions to more complex problems, and may also enable simple interpretation of 
experimental data for electrobiochemical systems. 
1. Introduction 
In many electrochemical and electrobiochemical applications, the continuum governing equations describing the 
concentrations of ionic species and their transport under the action of electric fields are the 
Poisson-Nernst-Planck (PNP) Equations. Despite the fact that these equations have been well known and studied 
for over a century, they remain of current interest because of applications ranging from batteries (Torabi & 
Aliakbar, 2012; Venkatraman & Van Zee, 2007), bioelectric dressings used in wound healing (Banerjee et al., 
2014), diffusion of charged species through ion channels in cell membranes and ion selective membranes 
(Coalson & Kurnikova, 2005; Fíla & Bouzek, 2003), electro-osmosis in micro and nano-channel systems 
(Hrdlička, Červenka, Přibyl, & Šnita, 2010), transport of charge carriers in semiconductors (Markowich, 1986), 
ionic current rectification through charged micro and nano channels (Chein & Chung, 2013) to as diverse a field 
as deterioration of reinforced concrete structures due to diffusion and attack by the chloride ion (K. Krabbenhøft, 
& J. Krabbenhøft, 2008). In their most general form (unsteady, 3-D), the PNP equations are usually solved 
numerically. Nevertheless, analytical and approximate closed form solutions to benchmark problems can be 
useful in validating numerical solutions, and in enabling a fundamental understanding of the influence of 
experimental parameters on ionic diffusion.  
Exact analytical solutions to the PNP equations have been obtained for various situations. In addition, 
approximate solutions using singular perturbation analyses and numerical solutions have been also been reported. 
These analytical and approximate solutions can be broadly categorized as considering (1) 1-D, steady-state, two 
species (Barcilon, Chen, Eisenberg, & Jerome, 1997; Golovnev & Trimper, 2010; Liu, 2005; Singer, Gillespie, 
Norbury, & Eisenberg, 2008), (2) 1-D, unsteady, two species (Golovnev & Trimper, 2011), (3) 1-D, unsteady, 
single species (Schönke, 2012), and (4) 2-D and 3-D, unsteady, single species cases (Schönke, 2012). Moreover, 
the analytical solutions obtained for these different cases vary in the problem formulation as far as boundary 
conditions, scaling, and assumptions are concerned. For instance, elegant closed form solutions have been 
obtained in the case of a single ionic species for the unsteady 1-D, 2-D, and 3-D PNP equations (Schönke, 2012). 
For the 1-D, unsteady case with a single ionic species, the PNP equations have been shown to reduce to the 
scalar Burger’s equation (Schönke, 2012). However, the single species PNP equations lead to incorrect values 
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for the diffusivity inferred from migration experiments because of neglect of the need for quasi-neutrality (K. 
Krabbenhøft, & J. Krabbenhøft, 2008). In this paper, we consider a benchmark problem pertaining to 
electrobiochemical systems, specifically bioelectric dressings used in wound healing (Banerjee et al., 2014), 
which involve the two-species, steady-state PNP equations in 1-D and 2D. Approximate solutions to these 
equations are obtained using order of magnitude analysis and the singular perturbation method for the 2-D case.  
This paper is organized as follows. The following section discusses formulation of a model 1-D, steady-state 
benchmark problem with two ionic species and its analytical solution. The two-species PNP equations for a 
model two dimensional problem, associated scaling, and their approximate solution using the method of singular 
perturbations are given in Section 3. A summary along with the conclusions are given in Section 4. 
2. Poisson-Nernst-Planck Equations in One-Dimension 
The PNP system for two ionic species (one a singly charged positive ion and the other a singly charged negative 
ion) in a linear, isotropic, homogeneous medium is given by:  

   ∗  ∗ =      ∗  ∗ +      ∗   ∗   ∗  ∗  (1) 
   ∗  ∗ =      ∗  ∗ +      ∗   ∗   ∗  ∗  (2) 
    ∗  ∗ = −  ( ∗ −  ∗) (3) 
where the * denotes a dimensional quantity, p and n are the number densities of positive and negative ions, Dp 
and Dn are the respective ion diffusivities, µp and µn are the respective ion mobilities, φ is the electric potential, e 
is the fundamental charge of an electron, k is Boltzmann’s constant, ε is the permittivity of the medium 
containing the ions, and T is the temperature (taken to be a constant here).  
2.1 Model 1-D Problem 
2.1.1 Formulation of Problem and Scaling 
Consider the model problem of a linear, isotropic, homogeneous, isothermal medium in which are present 
positive ions of number density p and negative ions of number density n. Suppose there are two electrodes 
immersed in the medium which are not connected to an external circuit. Such a situation can arise for example 
under open circuit conditions in a battery (Torabi & Aliakbar, 2012; Venkatraman & Van Zee, 2007), or in a 1-D 
analog of a bioelectric dressing in contact with water or wound exudate (Banerjee et al., 2014). Furthermore, 
suppose that there is a constant generation of species n at one of the electrodes, such as the generation of OH- 
ions at the oxide surface of a silver oxide electrode (Torabi & Aliakbar, 2012). The governing equations (1-3) 
apply to this case, re-written by relating the mobilities to the ion diffusivities via the Einstein relation 

eZD kTµ = , where 1Z = +  for the positive ions and 1Z = −  for the negative ions: 

   ∗  ∗ =      ∗  ∗ +         ∗   ∗   ∗  ∗  (4) 

   ∗  ∗ =      ∗  ∗ +         ∗   ∗   ∗  ∗ 
 

(5) 

    ∗  ∗ = −   ( ∗ −  ∗) (6) 

Introducing a reference length scale Lref, reference time scale tref, reference number density nref, and reference 
potential φref, these equations can be non-dimensionalized to yield: 

 Π     =       + Π            (7) 

 Π     =       + Π            (8) 

       = −Π ( −  ) (9) 
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where Π =             ,Π =        ,⁄  Π =             ,     Π                 . For the case of a 
bioelectric dressing, Lref ~ 1 mm, DOH-~ 4.56 x 10-3 mm2/s (Lee & Rasaiah, 2011), and tref >> 103s so that Π1 << 1 
as is Π3. Moreover, φref ~ 1 V and T ~ 300 K so that Π2 ~ O(10). Therefore, for the problems of interest, the PNP 
equations reduce to their steady state form: 

       + Π           = 0 (10) 

       + Π           = 0 (11) 

       = −Π ( −  ) (12) 

Equations (10) and (11) may be added and subtracted separately, yielding: 

       + Π           = 0 (13) 

       + Π           = 0 (14) 

       = −Π   (15) 

where P = p + n and N = p – n. Note that if quasi-neutrality prevails, N=0, i.e. p=n, resulting in the familiar 
ambipolar diffusion equation for species concentration with zero electric field and with equations (13-15) 
identically satisfied.  
There are two possible choices for φref. If we set φref=kT/e, then Π2=1 and Π =         ⁄ , where   =           ⁄    ⁄

 is the Debye length. It should be mentioned here that the appearance of the Debye 

length in this analysis agrees with previous studies that also naturally led to the rise of the Debye length quantity 
in non-dimensionalization (Hrdlička, Červenka, Přibyl, & Šnita, 2010). This case has already been considered in 
the literature for ion channels in membranes and an approximate solution using singular perturbation methods 
has been obtained (Liu, 2005; Singer, Gillespie, Norbury, & Eisenberg, 2008). In the present case of a bioelectric 
dressing however, φref is taken to be specified, e.g. the open circuit potential difference across the silver oxide 
and zinc dots in the bioelectric dressing is on the order of 0.1 V (Banerjee et al., 2014), and Lref is the spacing 
between the electrodes which is on the order of millimeters in the case of the bioelectric dressing. Thus, Π =         ~4⁄  for φref = 0.1 V and T = 300 K, and Π =                 ~10  for Lref = 1 mm, ε ~ 
80x10-12 F/m, and nref ~ 1020 m-3. The latter values for ε and nref are based on the medium being physiological 
saline (pH~7.4) from which we obtain nOH

-
 ~1020 m-3 and nH

+
 ~1019 m-3. The solution for this case is given next. 

2.1.2 Solution of the 1-D Steady State PNP Equations 
For the conditions where the open circuit voltage and distance between electrodes are specified as in the case of 
a bioelectric dressing [3], Π =         ~4⁄  and Π =                 ~10 . The governing equations 
(13)-(15) may then be re-written as: 

        +           = 0 (16) 

        +           = 0 (17) 

        = −  (18) 

where µ=1/Π2~O(10-1) and λ=1/Π4~O(10-6). The boundary conditions are taken to be P(0)=PL, P(1)=PR, 
N(0)=NL, N(1)=NR, φ(0)=φL, and φ(1)=φR. Since, λ is on the order of O(10-6), then from equation (18) we may 
conclude that  ≈ 0. This analysis then yields from equation (16) and from using the boundary conditions, a 
simple expression for P(x): 
  ( ) =   (1) −  (0)  +  (0) (19) 
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Using this result in equation (17) and applying the boundary conditions for the electric potential, the solution for 
the non-dimensionalized electric potential is: 

  ( ) =   ( (1) −  (0))     ( (1) −  (0)) +  (0) +   (20) 

where  =   (1) −  (0)   (1) −  (0)   ( (0)) −   ( (1))   
 =   (1) −    (1) −  (0)    ( (1)) 

Such a logarithmic dependence of the electric potential on x is consistent with previous studies on the 
one-dimensional PNP system (Singer, Gillespie, Norbury, & Eisenberg, 2008). Figures 1 through 3 show the 
numerical solutions which result from solving the full PNP system (Equations 16-18) for the boundary 
conditions of this model problem (P(0)=0.2, P(1)=0.8, ϕ(0)=0.4, ϕ(1)=1.4, N(0)=-0.005, and N(1)=0), as well as 
the analytical solutions given by equations (18)-(20). It can be seen that good agreement is found between the 
analytical and numerical solutions.  

 
Figure 1. The numerical solution for N(x) resulting from solving the full PNP system (Equations 16-18). This 

solution can be compared to the analytical approximation of  ≈   

 
Figure 2. The numerical solution for N(x) resulting from solving the full PNP system (Equations 16-18) and the 

analytical solution for P(x) plotted from equation 19 
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Figure 3. The numerical solution for the Electric Potential ϕ(x) resulting from solving the full PNP system 

(Equations 16-18) and the analytical solution for the Electric Potential plotted from equation 20 
 
3. Poisson-Nernst-Planck Equations in Two Dimensions 
The PNP equations in two dimensions for two ionic species with Z=+1 and Z=-1 can be written as: 

   ∗  ∗ =      ∗  ∗ +      ∗  ∗ +         ∗   ∗   ∗  ∗ +         ∗   ∗   ∗  ∗  (21) 

   ∗  ∗ =      ∗  ∗ +      ∗  ∗ +         ∗   ∗   ∗  ∗ +         ∗   ∗   ∗  ∗  (22) 

    ∗  ∗ +    ∗  ∗ = −   ( ∗ −  ∗) (23) 

where the Einstein relations relating the ionic mobilities to the diffusivities have been used and the diffusivities 
and temperature are in turn taken to be constant. Using the same reference quantities for non-dimensionalization 
as described in Section 2.1.1 with the exception of Lx and Ly as the new characteristic length scales in the x and 
y directions, the PNP equations reduce to the following non-dimensional steady state form for the bioelectric 
dressing: 

       + Π       + Π           + Π Π           = 0 (24) 

       + Π       + Π           + Π Π           = 0 (25) 

       + Π       = −Π ( −  ) (26) 

where Π =      ⁄    ⁄
, Π =        ⁄  ,     Π =               . 

As in the case of the 1-D PNP equations, equations (24) and (25) may be added and subtracted to yield: 

       + Π       + Π           + Π Π           = 0 (27) 

       + Π       + Π           + Π Π           = 0 (28) 

       + Π       = −Π   (29) 

where P=p+n N=p-n. These equations arise in the model problem described in the following section. 
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3.1 Model 2-D Problem 
3.1.1 Formulation of Problem and Scaling 
The Procellera® bioelectric dressing consists of alternating circular regions of zinc oxide and silver oxide dots 
(on the order of millimeters in size and separated by millimeters) on a cloth base. When the dressing contacts 
wound exudate, redox reactions occur at the electrode surfaces that result in potential differences between silver 
and zinc dots (Banerjee et al., 2014). This results in an applied electric field distribution that drives electrotaxis 
and accelerates wound closure. For such a bioelectric dressing, φref = 0.1 V, T = 300 K, Lx = 1 mm, Ly = 100 µm, 
ε~80x10-12 F/m, and nref~1020 m-3.  
Under these representative conditions: Π =      ⁄    ⁄ ~ (10 ) , Π =         ~  (1)⁄ , and Π =               ~ (10 )  
From equation (29), these conditions correspond to the case of a quasi-neutral far-field where N≈0 or n≈p. 
Equations (27) – (29) then reduce to: 

        +         = 0 (30) 

           +             = 0 (31) 

       +         = 0 (32) 

where  =      =  (10  )⁄ . The boundary conditions are taken to be  ( ,  = 0) =  ( ), describing the 
potential distribution at the surface of the bioelectric dressing,  ( ,  = 1) =   , where    is the far-field 
potential which may be set to 0 for convenience. The remaining boundary conditions for  are the symmetry  

conditions:         = 0 and         = 0. The boundary conditions for P are taken to be  ( ,  = 0) =  ( ),  

where g(x) is a specified distribution of positive and negative ion concentrations at the surface of the bioelectric 
dressing. In the far-field, P is also taken to be specified, P(x,y=1) = 2nref. The remaining boundary conditions are  

the symmetry conditions         = 0 and         = 0. 

3.1.2 Solution of 2-D Steady State PNP Equations 
The model problem described in Section 3.1.1 is solved using the method of singular perturbations (Mei, 1997). 
We first seek the outer solution in the far field, then the inner solution near the boundaries and finally find the 
uniformly valid solution through matching. The governing equation for the potential distribution is solved first. 
The outer solution can be found relatively easily by letting φ(x,y) =  φ0(x,y)+ϵ2φ1(x,y)+… 
Substituting the perturbation expansion in equation (32) and applying the boundary conditions in the x-direction, 
i.e.   (   )  =   (   )  = 0, we arrive at: 

O(1):   ( ,  ) =    ( ) (here C1 is a function of (y)) 

O(  ):   ( ,  ) =  −           +   ( ) with the solvability condition:        = 0 

Which yields the simple result:   ( ) =    +    

Hence we find that the zeroth order solution assumes the form: 
      ( ,  ) =     +   (33) 
where c1 and c2 are constants independent of y. Finally, applying the boundary condition  ( ,  = 1) = 0 away 
from the boundaries we arrive at the zeroth order outer solution: 
      ( ,  ) =   ( − 1) (34) 
Next, we shift our attention to the boundary layer at y = 0. To examine this case, we introduce an inner variable:  =     which leads to a Poisson equation of the form: 

       +       = 0 (35) 
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Again, we assume the solution is a regular perturbation series in   :  ( , ) =   +     + ⋯  
We are interested in the leading term in the inner expansion. This leads to the following problem: 

        +        = 0 (36) 

subject to the following boundary conditions: 

  (   , )  =   (   , )  = 0 ,     ( , = 0) =  ( )    ,     ( , → ∞) =        

Equation (36) is solved using the technique of separation of variables to solve the Laplace equation for the 
leading term of the inner solution expansion which ultimately yields: 

  ( , ) =    2 +          
   cos (   ) (37) 

where   = 2∫  ( )  cos(   )       for n = 0,1 , 2, … Finally, applying the matching condition:  
 lim →   ( , ) = lim →      ( ,  ) (38) 

leads to a uniformly valid solution: 

  ( ,  ) =    2 (1 −  ) +             
   cos(   ) +  (  ) (39) 

The analytical solution given by equation (39) for the case of  ( ) =  , and   = 0 is shown in Figure 4. 
Figure 5 shows the numerical solution of the full Poisson-Nernst-Planck system (Equations 27-29) for the 
potential. As can be seen from the figures, the analytical solution shows good agreement with the numerical 
solution. To better quantify the agreement between the two solutions, the absolute value for the difference 
between the two is shown in Figure 6. A maximum difference of about 3% is found near the y=0 boundary with 
much smaller differences everywhere else. Better agreement can be obtained by seeking the first order solution 
for the perturbation expansion, but in the spirit of keeping the results simple and useful for validation purposes, 
higher order terms in the expansion for the solution are not given here.  
 

 
Figure 4. Analytical solution for the two dimensional PNP system of equations as obtained from equation (39) 

for the case of f(x)=x and  ∞ =   
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Figure 5. Numerical solution for the two dimensional PNP system of the system of equations (30-32) for the case 

of f(x)=x and   =   

 

 
Figure 6. The absolute value for the difference between the numerical solution and the analytical solution shown 

in Figures 4 and 5 

 
4. Conclusions 
In this paper, analytical solutions for the steady state Poisson-Nernst-Planck equations in one and two 
dimensions have been given for model problems in the area of electrobiochemical systems such as bioelectric 
dressings used in would healing. These model problems can serve to benchmark and validate numerical solutions 
for more complex problems. The analytical solutions are obtained for two ionic species in both one and two 
dimensional systems which, to the best of our knowledge, have not been investigated in the literature. Simple 
closed form expressions are obtained in the one-dimensional case while an approximate solution using the 
method of singular perturbations is obtained for the two-dimensional model problem. The analytical solutions 
presented here are also shown to yield good agreement with numerical solutions of the corresponding PNP 
equations. The analytical solutions presented here may enable interpretation of experimental data for 
electrobiochemical systems.  
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