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Abstract

We discuss reasons why a probability amplitude, which becomes a probability density after squaring, is considered
as one of the most basic ingredients of quantum mechanics. First, the Heisenberg/Schrédinger equation, an
equation of motion in quantum mechanics, describes a time evolution of the probability amplitude rather than of a
probability density. There may be reasons why dynamics of a physical system are described by amplitude. In order
to investigate one role of the probability amplitude in quantum mechanics, specialized codeword-transfer
experiments are designed using classical information theory. Within this context, quantum mechanics based on
probability amplitude provides the following: i) a minimum error of the codeword transfer; ii) this error is
independent of coding parameters; and iii) nontrivial and nonlocal correlation can be realized. These are
considered essential advantages of the probability amplitude over the probability density.

Keywords: probability amplitude, probability density, quantum mechanics
1. Introduction

Quantum mechanics (QM) is considered the most basic theory of nature. All phenomena including those of the
gravitational force are considered to be expressed by a language of QM. However, an essential understanding of
the basic nature of QM yet to be realized, and efforts to look for more fundamental explanations continue. Of
course, QM itself is a self-consistent theory and requires no fundamental reasoning to support its truths beyond
what are gains from experiments. Still, it is worth pursuing more basic reasons which determine QM to be the
most fundamental law of nature. For instance, Wheeler asked “Why the quantum?" and discussed the relation
between QM and information theory (Wheeler, 1990, 1991). In this report we attempt to answer the same
question from Wheeler’s point of view. One of the most essential differences between quantum and classical
mechanics is the former’s need for a probabilistic treatment of theoretical predictions. One cannot avoid the
probabilistic interpretation of a wave function proposed by Born (1926), which is now known as the Copenhagen
interpretation. A fundamental equation of QM, the Heisenberg/Schrodinger equation, does not describe the
behavior of a physical observable nor its probability density; rather, it describes the probability amplitude, which
is a characteristic of QM and possesses no classical counterpart. (In a narrow sense, ‘quantum amplitude” is a
complex number whose square of the absolute value is a probability. In this report, we use a word “quantum
amplitude” not only for complex numbers, but also for vectors whose square of the absolute value is a
probability.) This report considers reasons why fundamental laws of physics are described by probability
amplitude instead of probability density, leaving aside the question of why probability itself is necessary. To
clarify essential properties of probability amplitude, codeword-transfer experiments are designed on the basis of
classical information theory. Taking into account the discussions on these experiments, three essential
advantages of probability amplitude over probability density are pointed out in the following sections.

First, definition of quantum system and probability amplitude are given in Section 2 under a very general
mathematical framework. Then, codeword-transfer experiments are designed within classical information theory
to investigate the role of probability amplitude. Experiments using a stochastic algorithm cannot avoid statistical
error due to sample number. In Section 3, we show that a coding method based on probability amplitude should
minimize statistical error. Moreover, statistical errors of the codeword-transfer are independent of the
parametrization allowing each character to be transferred; this is shown in Section 4. Another essential feature of
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QM is its lack of local realism, which can be judged by Bell’s inequality. This local realism and Bell’s inequality
are described using terminology of classical information theory, again as the codeword-transfer experiment. A
method based on the probability amplitude can induce a violation of Bell’s inequality, as shown in Section 5.
Throughout this report, classical information theory is used to describe codeword-transfer experiments.

2. General Quantum System

A general framework to define the probability amplitude appearing in QM is considered in this section. Here we
emphasis algebraic aspects of QM and ignore dynamical ones. The question which must be asked here is “What
minimum set of assumptions makes a system look like quantum mechanics?” We propose the following
elements as indispensable ingredients for QM.

Definition 2.1 (Quantum Space)

K is any field and V is a linear (vector) space on it. K is named as a base field and is associated to each point
of a set, M. State vector and probability measure are introduced on these spaces as follows.

1) A map from a point on M to a tensor product of a vector space V,
WM->VE=V @ QV:ix W)=y (), -, p* )} (1)
k
is named state vectors. Here, M is named the base set and x is a point on it.

2) A map from the state vector to a real number such as

wV >Ryl - u@p) e[01],i=1,,k )
is named a probability measure. The index i on ¥’ runs from 1 to k. The sequential map
pephiM >V - Rix o p'(x) = p(H)(x) ©)

is also called a probability measure and represented by the same symbol, p, when V' are obvious.

3) The probability measure must be normalized as

Jeeren PWH() =1 “
for each i, where I' is an appropriate subset of the base set M. Since the probability measure is considered as
Lebesgue measure, the integral should be interpreted as summation when M is a discrete set.

4) The set {IK,V, W, u} is named a “quantum space.”

To construct QM, these conditions are necessary, but are not sufficient. For standard relativistic QM (or quantum
field theory), we take Hilbert space as a vector-space V on a field of complex numbers C. State vector can be
constructed using square integrable functions on a given support. The state vector is associated with each point
of the Minkowski manifold as a base set. (Sometimes a Fourier transformation of ! defined in the momentum
manifold is used instead of ' itself. In that case, a corresponding Hilbert space is called “Fock space”.) The
probability measure is introduces as p(y') = [¢|?. For the normalization, T is taken as a hyper-surface on M
such that any two points on I' have a space-like distance each other. (Or it is normalized in the momentum
space.) When the probability measure is defined as square of the absolute value of the state vector, the state
vector is called a “ probability amplitude” in this report, hereafter. In this report, simple quantum spaces are used
since only algebraic aspects of QM are of interest here.

3. Minimization of Measurement Error

First, let us consider a statistical error for measurements of a single physical observable on the quantum space
defined in the previous section. A codeword-transfer experiment simulating standard QM in a much simpler
quantum space, retaining essential properties, is introduced here. In information theory, an encoding method
which minimizes statistical error among methods using stochastic algorithms is known. The method using
probability amplitude is shown to be an example of such an encoding method giving minimum errors.
Terminology of classical information theory used here can be found in Cover and Thomas (1991) and Kurihara
(2013) and Appendix 7.1.

Definition 3.1 (Stochastic Codeword-Transfer Experiment)
The experiment satisfying the following conditions is called a stochastic codeword-transfer experiment:

1) Alice (A) transfers a set of m different codewords W = {w,, -, w,,} to Bob (B) after converting
them to state vectors 1 € V, where V is a m-dimensional vector space.
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2) B receives a state vector sent from A and obtained one of codewords W by measuring them. Here
meaning of “measuring” will be explain in following items.

3) The same probabilistic function of
eV = Ripc(P)(wp) = p; € [01]

is given for B. The value p; gives a probability to observe a codeword w;. Only one vector space V appears
here, then the function p.(¥)(w;) will be written as u.(w;), hereafter.

4) Probabilistic function p. is normalized as:
ity be(w) = 1.
5) A can repeat to send a finite number (n times here) of the same state vectors to B.

6) B obtains n independent codewords by measuring sets of state vectors sent from A, such as
X = {x1,, xn}.

7) B has an unbiased estimator to obtain a set of real numbers x; € [0,1] from measured data as
% = Ti(X) =+ 37, 0:(x)),
_ 1 (x] = a),-),
Here X; converges in probability to p; when n — oo, thanks to the law of large numbers.
8) Finally B obtains a sequence of numbers {X;, -, X,,}, which A intended to send.

This codeword-transfer experiment is constructed on the quantum space {W,V,, u.} as defined above. In this
case, positions where A or B exists are not specified. No dynamical structure is assumed to transport a state
vector from A to B here, however it is just assumed that these two points are separated from each other and
there is no way to communicate other than the state-vector transfer. A question to ask here is how may one find
the probability measure p., which maps the state vector 1 to a real number p.(i) to minimize an error of this
experiment for any 1. The answer is already known as a theorem, which was first obtained by Fisher (1922).
Wootters stated this theorem (Wootters, 1980) without any proof but later provided the same by introducing a
statistical distance (Wootters, 1981). Recently Wootters discussed this subject again in Wootters (2013). Here we
state the theorem clearly again and give an independent and much simpler proof using an information theory.

7!3
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Figure 1. Example for m = 3: assignment of a vector V on two-dimensional sphere

Theorem 3.1 (Fisher—Wootters)

Among stochastic codeword-transfer experiments, that which employs the following probability measure gives
the smallest error to measure a single codeword from a set of codewords:

1) A selects a set of codewords W = {w,,--,w,,,} and a sequence of numbers P = {p,,-:-,p,} which
is intended to be sent to B. The P is normalized as Y-, p; = 1.

2) A prepares an m-dimensional Euclid space R™ and orthonormal bases {ny,**,nm}

3) A sets a state vector 1 as to map each element of P at a point on a unit sphere S™~1 centered at the

origin of R™ to be p; = |y;|?, where y; is an i’s component of the position of ¥ on S ! by the
orthonormal bases defined above.
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4) B obtains a codeword w; with the probability measure u.(w;) = |y;|%.

Proof.

1) The smallest error = u.(w;) = |y;|? :
Data after n independent measurements are expressed as X = (xq,*+,x,) with the probability u.(w;) = |y;|?.
The probability density to obtain a set of data X is assumed to be expressed as f(X;y) = u.(w;), where
Uc(w;) used defined as an equation (3). Then the Fisher information matrix (FIM) (Cover & Thomas, 1991) can
be written as

_ L.pyy 0logf(X5y) dlogf(X;4)
Jij = (X)) —5 = 20,

Opc(wp)/0w; Opic(wi) /0w
Ue(Wk) ue(wk)

= 2111,1:1 Hc(wk)

The functions p.(w;) are not independent of each other owing to conservation of the total probability,
Yiz1 Ue(w;) = 1. We can assume that all u.(w;)(i = 2) are independent except u.(w;) =1 — Y7L, uc(w;))
without any loss of generality. Since all other p.(w;.q), except this correlation due to the conservation of
probability, can be set to be independent after appropriate linear transformation of p., the FIM can be taken to
be a diagonal matrix. Here we use a short-hand expression, p.(w;) =p;, dpc(w;)/dw; =p;;, and
s the(wj) = ; then the diagonal components of the FIM can be written as

Ji=Ym u (@)2
ii k=1 Mk e

=W (Q)z + Y= Uk (@)2

Ha Hi
- (S o ()
uho | B
=it

Here the independence of all ps, each other is used second line to third line in above calculations. The
minimum value of J;; is obtained when j = y; within the allowed region of u; < i < 1. Then we get

i
mi(1-p)’

min{/;;} = J;; =

On the other hand, measured data after n independent measurements must follow a multinomial distribution,
whose covariance matrix o is

o = (nﬁiﬁj @=n
Yo\npi1-p) (=),

where P; is measured probability of an ith codeword. Then, after n independent measurements through
estimator T defined in Definition 2.6, a covariant matrix X(X) can be expressed as

24(0) = =Xy (0:(xe) — %)(0; () — %)

.
Then, diagonal components of the covariant matrix become

;0 = %Uii

= pi(1 = p).
In general, measured probability (p;) differs from true probability (u;); however, it is certain that the error of
|D; — u;| will be less than any small value after a sufficient number of events accumulates, as a result of the law
of large numbers and the assumption that the estimator is unbiased. Then, we use p; instead of Pp; in the
discussions that follow. The probability y; that maximizes diagonal components of the covariant matrix is given
as u; =1/2 due to dX;;/du; = (1 —2u;) = 0. Then, the diagonal components of the covariant matrix are
given as X;; = 1/4. The Cramér—Rao inequality (Cover & Thomas, 1991; Cram’er, 1946; Rao, 1945) gives the
lower bound of the covariant matrix as
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(W =Jn
A possible range of the inverse of the FIM is

i(1—p; - 1
Hi( 2#1) >( 1)1‘,1‘ >—> 0,
Hij Jii

where we use the FIM (]) is a diagonal matrix. Then a solution of the following differential equation gives the
minimum variance in general:

i
ui(1—py)

= ufi = 4 (1 — ).
The solution of this equation can be obtained as

pi = cos?(w; + ¢y),

where ¢; is an arbitrary phase factor. This phase factor corresponds to a rotation of the coordinate system
prepared in Theorem 3.1 and gives no essential effect on the result. Then we set ¢; = 0 hereafter as
u; = cos?w;. Each w; gives the same differential equation; then parametrization y; = \/,u_l = cosw; gives the
lowest value of the variance, which is nothing other than the direction cosine of the vector V, whose endpoint is
on the unit sphere S{"~!. Then, the method to give the minimum variance is: i) normalize the codeword w; to
0 < w; < m/2; ii) map on the S]*"! as w; to be an angle from axis 7;; set iii) the probability to observe the
codeword w; tobe cos?w;, which are the same as the assumptions of the theorem.

2) uc(wy) = lyil?
When we set y; = |y;
Zi(w) = (1 — ;)

= cos?w;(1 — cos?w;)

= the smallest error:

|2 = cos?w;, the diagonal components of a covariant matrix become

= cos?w;sinw;.
Then the minimum value of X;; is obtained to be 1/4 at w; = /4. On the other hand, the diagonal
component of the FIM matrix can be

Fo= u |2 —2
]u - |Aul,l| wi(1—pp)

= 4cos?w;sinw; /(cos?w;sin®w;)

=4.
Then f;' = 1/4, which matches the minimum value of X;;.
In the above decoding method, a relation between probability amplitude and density is algebraically the same as
in the standard QM, which means the latter employs a coding method that minimizes statistical error among
other stochastic methods. This is our first example outlining the advantage of the method using probability
amplitude.

Alice | | Bob
Pulse Laser > . < Photon detector
One photon emission /’I |\ OUtpUt =0or1
polarization plate 1 polarization plate 2
(variable angle : 8) (fixed angle :6,)

Figure 2. Code-transfer experiment realized by using polarized laser beam

4. Parametrization independence of a measurement error

Related to the Theorem 3.1, one can prove following theorem, which is also given by Wootters (Wootters, 1980,
1981) and is important to consider one role of the probability amplitude.
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Theorem 4.1

The encoding rule given by the Fisher—Wootters theorem gives uniform errors independent of its
parametrization.

Proof. A set of state vectors V = {wy, ", wp,} are encoded as y; = cosw;, 2, ¥2 = 1, according to the

Fisher—Wootters theorem. Looking at an ith element w;, one sees a relation between an error of estimation dw;

and an error to measure the parameter &y; as |6y;/S6w;| = sinw;. Under the normalization condition of
Mmoo yE=2", cos’w; = 1, the total error after measuring n independent data becomes

2
2_1lym %|
o= i=1 50)[
=¥, [sin’w]
= L Li=1 ISIN"W;
1
= ;Z?L |1 — cos?w;|
m-1

n

m—1
20= f—
n

which means a mean-square error is determined by the statistics per degree of freedom and independent of the
position on an m-dimensional sphere. A factor ¢2 o 1/n follows from the central limit theorem.

Example 1 (Codeword-transfer experiment realized using a polarized laser beam)

Let us consider the codeword-transfer experiment defined in Definition 3.1 for a realistic quantum system: the
pulse laser has a polarizer (1/4 plate). (See Fig. 2.) Alice (A) has experimental equipment consisting of a pulse
laser and a polarizer and can transfer a single photon with linear polarization with any polarization plane to Bob
(B). B has a A/4 plate with fixed plane and photon detector with 100% efficiency. A knows the angle of
the polariser plane of B, say 6,, and has a clock exactly synchronised to that of B. A assigns codewords on
equally separated points on a unit circle, and selects an integer, say j. Then A sets an angle of the polariser
according to a codeword to be 8 = 6, + a, where a = j/2m. A transfers one photon a second and n photons
in total. B measures photons behind the A/4 plate. If B observes a photon, he records “1” and if not, he
records “0”. As a result B obtains data X, = {X;,X5,--, X, } = {1,1,0,1,0,--- }, and decodes them to one real
number with average ¥ = ). X;/n. According to quantum mechanics this number must be ¥ = sina. Finally,
B obtains a number which A intended to send. This codeword-transfer experiment satisfies Definition 3.1,
which means quantum mechanics gives codeword-transfer experiments with the smallest errors, given by
Theorem. 3.1.

5. Nonlocal realism

A point definitely distinguishing QM from classical mechanics is that QM does not have local realism. Related
to this fact, there are two important theorems: violation of Bell’s inequality (1964) and Kochen—Specker theorem.
Both theorems are related to a correlation of two independent measurements. It is shown in this section that these
two theorem can be realized again using the probability amplitude. The trick to introduce the nonlocal realism
without breaking the special relativity is realized unsing a freedum in the map from the state vector (probability
amplitude) to the probability measure defined in the equation (3). An additional information can be implemented
into the probability amplitude as a phase factor of a U(1) transformation, which keeps the probability measure
unchanged locally. This is another example of the advantage of the probability amplitude over the probability
density.

In order to discuss a correlation of two independent measurements, a double codeword-transfer experiment is
designed.

Definition 5.1 (Stochastic double codeword-transfer experiment)
A stochastic double codeword-transfer experiment is defined by extending Definition 3.1 as follows:

1) Alice (A) transfers two sets of m different codewords and state vectors, W, = {ay, -, &, } and
Wg = {B1,"**, Bm}, to Bob (B) and Charley (C) after converting them to state vectors ¥, € V, and Yg € Vg,
where V, and Vg are m-dimensional vector spaces.

2) (B) and (C) are placed opposite to <A and receive state vectors sent from <A, stochastically choose
one of the two sets to be measured. Neither B and C know which set is chosen by the other (independence of
set selection).
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3) Encoding is performed using the following probabilistic function:

Hact Ve © Vﬁ) W, D Vﬁ) - R: (y; Vj) = ﬂdc(Yi:Vj) =p;; € [0,1],
where V, @ Vg = (@1, &m, B, Bm) = (Y1, ¥2m) and 1 <, j < 2m. First (second) slot of p,. are
for state vectors sentto B (C), respectively.

4) B and C select for measurement one of the state vectors 1, or Pp, independently. Possible combinations
of measured codewords are {(ay, @;), (ax, B1), (Bx, 21), (B, B1)}. Probabilistic function u,. is normalized as:
Vyj'Z?; Mac(aiv)) =1, VY]’» =1 Hac(Bo ) =1
V%E}”:l #dc(yi'aj) =1 vVi:Z;'nzl #dc(yi’ﬁj) =1

However it does not guarantee that all the probability measures, pg. (@, @;), Uac(@k, B1)s Hac(Br 1), and
Uac(Br, B1), exist at the same time.

5) A can send a finite number (n times here) of the same set of state vectorsto B and C.
6) Measurements:

(a) B obtains n independent codewords by measuring sets of state vectors sent from <A, such as
XB = {xE,,x2}, where xP € W, ® Wj.

(b) For C, the same as (a) with a replacement B — C.
7) Estimator:
(a) B has an unbiased estimator to obtain a set of real numbers X; € [0,1] from measured data as
% =T,(X?)

_ SR 0i))
T Tieer ©1(x%)

1 (x5 =y
@i(xj) = <0 (xj 7)),
where i runs from 1 to 2m.
(b) For C, the same as above with a replacement B — C.

8) After completing measurement, B and C make a table X;; = (%2, JZ]-C), where X;; converges in
probability to p; ; when n — oo, thanks to the law of large numbers.

Bell’s inequality is a critical test to distinguish a nonlocal theory from a local one. This theorem can be
expressed by the language of classical information theory (Braunstein & Caves, 1988). We state this theorem
and give a proof in the context of Definition 5.1.

Theorem 5.1 (Bell)
Let us consider a case with a complete table to give the probability of observing any pair of codewords as
P(ay,, ai,, Bj,, Bj,) = tac(@i,, @i ikac(B),, Bj,)
+uac (@i, By, tac (B, @i,)
+ac (B, @i, tac (@i, Bj,)
+ac (B, Bilac (@i, @)

These measurements are performed as the stochastic double codeword-transfer experiment defined above. In this
case, a conditional entropy follows the inequality

S(a;, lai,) < S(a;,1B),) + S(B,18;,) + S(Bj, lay,).
Definitions and necessary formulae for following proof can be found in Cover and Thomas (1991) and
summarized in Appendix 7.2.

Proof. On the assumption there exists a complete probability table, P(a;,,a;,, B;,,B),), a joint entropy can be
written as

S(ai1' aiz' 'Bj1'ﬁf2) == Zi1'i2rf1-j2 P(ai1' aiz'ﬁjﬂﬁfz)logp(aiﬂ aiz‘ ﬁh' 'sz)
=S(a, NP, NPj,,a;)
= S(aiz n ai1'ﬁf1 n ﬁjz)'
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Using the chain rule of entropy sequentially, one can get
S(ay, N Bj, N Bj,, a;) = S(ay, lay,, B, B,) + S(a, N B, B},)
= S(ay, |ai,, B, Bj,) + S(Bj,lay, N B;,) + S(ai,, B),)
= S(ay, |ai,, By, Bj,) + S(Bj,lai,, B;,) + S(Bj, lay,) + S(a,)-
On the other hand, this joined entropy satisfies
S(ay, Nag, By, N B;,) = S(ay,, ;) + 5By, By, lai,, i),
> S(aiz, ail)
= S(az,) + S(ay,|a,).
Inequality follows from nonnegativity of entropy. From the property of the probability measure in the probability
space,
Va,,Y a, € Vy, P(a; N ay) < P(ay),
and the definition of joint entropy, the inequalities
S(ay, lay,, Bj,, B;,) < S(ai,1B),),
S(Bj,lai,, Bj) < S(B,18;,),
follow. Then Bell’s inequality is proved.

The necessary condition for Bell’s inequality, the existence of the complete probability table P(a;,, @;,, B}, Bj,).
corresponds to local realism in the physical terminology. Here, we give an example where Bell’s inequality is
not maintained.

5.3 Definition 5.2 (Stochastic double codeword-transfer experiment without a complete probability table)
Here, the number of codewords in the set is m = 2 for simplicity.
1) Set m = 2 in Definition 5.1-1 for two sets of codewords such as
Wy = {ay, s},
Wg = {1, B2},
Wy @ Wi = {ay, a3, b1, B2} = {Y1, V2, V3, Va}
and for state vectors as
V43 Y4(6,) = (cosb,, sinb,,),
Vi 3 Y (8p) = (cosbp, sinbg),
where 0 < 6,,0g < m. This parametrization configures an example of Theorem 3.1.
2) The same as Definition 5.1-2.
3) Encoding is performed using following probabilistic function:
Uac(Vi¥j) = |Vi|2|Vj|2-
4) B and C select for measurement one of the elements (codewords) in W, or Wy, independently.
Before measurement, B(C) rotates a detector angle up to 6, (6,). Neither knows the rotating angle of the other.

B and C correct this rotation angle after completing all measurements. This rotation does not affect the error of
the measurement, owing to Theorem 4.1.

(a) If state vectors {a;} and {B;} exist locally before the measurement for B, the probability that B
may obtain each codeword can be obtained after rotation as

lpy(ey) - lpy(ey —0p) = R(eb)lpyr
where R(0) is a rotation matrix, ¥, € V, @ Vp, and 8, = 6, or 6z depending on . The probability for C
is similar to the above. In this case we do not observe any violation of Bell’s inequality since we can prepare the
complete probability table.

(b) Suppose the angles 6, and 6 are not fixed before measurement and are fixed when B or C
measure the code from W, or Wy and the probability measure ;. depends on the result of their decision.
Moreover we require that the probability measure does not follow the functional composition condition (FUNC)
(Flori, 2013). In a context of the report, the FUNC is a requirement for any function f as arithmetic operations
on vectors and real numbers as
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Ve pac (F Wu ), i) = f(”dc(lpirl/)k)'Audc(lpj:lpk))-
A function f in Lh.s. maps real numbers to a real number. On the other hand, f in r.h.s from vectors to a real
number. Here we consider a natural isomorphism between real numbers and vectors in operations of addition,
subtraction, and (scalar) product, and represented the same symbol f. For a current example, the probability
measure does not satisfy the FUNC, for example, as

Hac(ay + az, i) = lag + a|*|l?,
ac(@, i) + pac(az, Yi) = (lag|* + laz 1) [ %

# Uac(ay + az, Py).
Suppose C obtains a; (a,). The angle 6, for B is fixed as 8, =6, (68, =m/2+ 6,), i.e., the probability
table is now situation-dependent. The state vectors for B are now

Ya(6: — 0p) Cobtaineda,
Wy =|Ya(6. +1/2—-6,) Cobtaineda,,
Ya(6, — 0p) Cobtainedf;.

If B decided to measure a codeword from a set Wp, nothing would happen. On the other hand, if B decided to
measure a codeword from the same set as C, then

Mac(ay, a1 + az)
[cos(6, — 8,)cos(B, — 6,) — sin(8, — 6,)sin(B, — 6,)|?
cos?(6, — 6,),
Mac(az, ay + az)
= |sin(6, — 8))cos(B, — 6,) + cos(8, — 6,,)sin(8, — 6,)|?
= sin?(6, — 6,).
Again the probability to obtain one of the a can be calculated using only local parameters on B. In both cases,

B can obtain a set of codewords that <A intended to send. The probability table is situation-dependent and there
is a possibility that Bell’s inequality will be violated.

5) 6) The same as the Definition 5.1.

It is proved that the Kochen—Specker theorem is incompatible the FUNC (Flori, 2013). Above stochastic double
codeword-transfer experiment is a model of the QM violating the FUNC to incorporate the Kochen—Specker
theorem. In order to confirm a violation of Bell’s inequality, it is tested numerically according to the above
example. A correlation between measured codewords independently obtained by B and C is defined mimically
like CHSH (Clauser, Horne, Shimony, & Holt, 1969) as

AS = S(a; lai,) — (S(ay,1B;,) + S(By, 18;,) + S(Bj,lai,)).

According to the results of Theorem 5.1, AS is bounded by negative values when the complete probability
table exists. If the theory is based on local realism, one can always prepare the complete table to observe
codewords for both B and C. In order to design the experiment that gives a stronger correlation (AS > 0), one
has to employ a rule for choosing the probability table, i.e., a choice that cannot be determined locally. Moreover,
the rule must also satisfy requirements from special relativity, if one would like to interpret as physical law. The
stochastic double codeword-transfer experiment defined by Definition 5.2 is an example of such a rule. Under
Definition 5.2-4b, for instance, B cannot know the probability table he is using because it depends on C’s
decision, and that cannot be known by B. This lack of the complete probability table is deeply related to the
Kochen—Specker theorem (KST). The KST insists of absence of a complete set of physical quantities without
measurements in QM, and corresponds exactly to lack of the complete probability table introduced in Definition
5.2. Moreover, if we look at only B’s results, we cannot extract any information about C’s choices and results;
that means C’s information cannot transferred to B immediately, which is a requirement from special relativity.
This coexistence of nonlocality and special relativity is realized by the rule of Definition 5.2-4b of the stochastic
double codeword-transfer experiment. The probability tables, pug(a;) and ugz(a,), include 8., though these are
tables for B, which is called “ entanglement’. However, B cannot extract a value of 6, because 6, appears
only in phase of the unitary transformation and disappears after reaching the average. Violation of Bell’s
inequality can be judged by checking whether the correlation AS is greater than zero or not. Numerical results
with employing rule of Definition 5.2-4b are calculated and shown in Fig. 3. One can clearly see the violation of
Bell’s inequality in some parameter regions.
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This trick can be implemented because the probability table represents probability amplitude. For example, if B
decided to measure a codeword from the same set as C, say V,, state vectors for B is superposition of two
possible sates depending on the result of measurement of C such as

apy . cosea) ) . (Cosea)
cosf, cosf,
+R(9b) ! (sinGa) |0a—>95+n/2 X (0’1) ’ R(HC) ' (sin@a ),

cos(6, — 6,)cos(6, — 6.) — sin(6, — 6,)sin(6, — 6,)
= (sin(@c — 6y)cos(6, — 6,.) —sin(8, — 6,)cos(6, — Gc)),
where R(0) is a rotation matrix. Then the probabilities of p,.(a;) are obtained as in Definition 5.2-4b. The
nonlocal realism is induced by squaring the state vector after superposition of two possible states. This is another
example outlining the advantage of the method using probability amplitude.

A8

Figure 3. AS for the stochastic double codeword-transfer experiment without a complete probability table. It
can be seen that Bell’s inequality is broken in a part of parameter region

6. Summary

In this report, a basic definition of quantum mechanics concerning its static aspect is discussed. Here, a dynamic
aspect of quantum mechanics is not treated. The simple codeword-transfer experiment which satisfies the
definition of quantum mechanics is designed to investigate some of it aspects. Then it is proved that a method
using probability amplitude gives the minimum error for the physical observables using information theory. Also,
it is shown that the size of the error doesn’t depend on parametrization of the coding. Nonlocal realism is one of
the most essential parts of the nature of quantum mechanics. It is shown that quantum mechanics defined here
can include nonlocal realism for the double codeword-transfer experiment introduced by extending a
codeword-transfer experiment, above. We showed that the quantum mechanics defined here can violate Bell’s
inequality, thanks to the property of the probability amplitude. Here key property is that the probability
amplitude has additional degree of freedom, such as a U(1) phase factor for instance, over the probability
density. Local experiments can measure only those based on the probability density and have noway to measure
the phase factor itself. Effects from the phase appeared only after comparing two or more nonlocal observables.
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Thus those nonlocal correlation stronger than the classical informational theory can be obtained without braking
the special relativity.

In conclusion, the probability amplitude rather than probability density gives the minimum and independent
mean-square errors from parametrization. Moreover, it allows one to obtain nontrivial and nonlocal correlation
on two independent measurements which violate Bell’s inequality incorporate with the Kochen—Specker theorem.
It is worth pointing out that nonlocal realism can be realized without any complex-number valued amplitude here.
The complex-number valued amplitude could be one of convenient representations for quantum mechanics, but
not an indispensable ingredient of that. For example, the representation of SU(2) (a rotation angle) can be used
instead of that of U(1) (a complex phase), which share the same Lie-algebra locally.
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Appendix

7.1 Classical estimation theory

We define terms associated with physical measurement according to classical estimation theory (Cover &
Thomas, 1991) as follows. Let X be a random variable for a given physical system described by the N-tuple
6 = {6;,--+,0y}, where 0; isthe i th physical parameter. The set of all possible values of 6; € R, denoted by
0, is called the parameter set. The random variable X 1is distributed according to the probability density

function f(x; 8) = 0, which is normalized as fxeﬂ dxf(x;0) = 1, where x € R is one possible value of the
whole event (= Q). For physical applications, we introduce the probability amplitude defined by

|w(x; 0)|2 = f(x; 6).
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A part of experimental apparatus is assumed to output numbers distributed according to the probability density.
Any resulting set of numbers X, = {x;, -, x,,}, drawn independently and identically distributed (i.i.d.), is called
the experimental data. The estimate of the physical parameter is called a  measurement. Because
experimental data are i.i.d., the corresponding probability density function can be expressed as a product:

£(; 6) = [T}, f(x;3 ).
A function mapping the experimental data to one possible value of the parameter set such as

Ti: Xy = 0:{xq, -, x,} & 6;
is called an estimator for the ith physical parameter, denoted by T;(X,) = 6;. The experimental error in
the ith physical parameter is defined as the root mean square error:

& = E[(T;(Xy) — 6:)]"/%,
where 8; is the true value of the i th physical parameter. True values of physical parameters are typically
unknown, but a mean-square error can be reduced below any desired value by accumulating a sufficiently large
amount of experimental data, thanks to the law of large numbers. If the mean value of the experimental error
converges to zero in probability, i.e.,

lim Eg, [6; — 6;] - O(inprobability),
n-oo

after accumulation of infinitely many statistics, that estimator is called an unbiased estimator. Among such
estimators, the one giving the least error is called the best estimator.

7.2 Information Theory

For a probability space (), A4,P) and probability variable X defined on it, information entropy S(X) is
defined as

S(X) = — Xxea P(x)logP(x).
S(X) = 0 immediately follows from 0 < P < 1. For two probability variable X,Y whose domains are (,, Q,,
where (,,(Q, €, a joint entropy is defined as

S(X,Y) = — Xxen, Xyea, P(x Ny)logP(x N y),
where P(x Ny) is a probability to observe x in X and y inY, simultaneously. A conditional entropy is
defined as

S(Y1X) = = Xxea, Xyea, P(x N y)logP(y|x),
Where P(y|x) is conditional probability to observe y in Y when x inX is obtained. On those entropies,
following formulae are obtained:

S(X,Y) = S(X) + S(Y|X),
SX|Y) < S(X).
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