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Abstract

We report a data-mining investigation for the search of topological insulators by examining individual electronic

structures for over 60,000 materials. Using a data-mining algorithm, we survey changes in band inversion with

and without spin-orbit coupling by screening the calculated electronic band structure for a small gap and a change

concavity at high-symmetry points. Overall, we were able to identify a number of topological candidates with

varying structures and composition. Our overall goal is expand the realm of predictive theory into the determination

of new and exotic complex materials through the data mining of electronic structure.

Keywords: electronic structure, data mining, topological insulators, predictive theory

This supplementary material provides the electronic band structure (with and without spin-orbit coupling), as well

as the partial and total density of states for each material predicted in this search. The material transforms from

direct gap (no spin-orbit interaction included, green line) at specific k-points to an in-direct gap (around the same

point in inverse space) when the spin-orbit is included (black line) in the electronic structure calculation, i.e. the

upper most valence band is pushed way and the anti-crossing feature appears.

The starting point is the inorganic crystal structure database (ICSD) which is a collection of some 130,000 ex-

perimental crystal structures obtained by X-ray and neutron diffraction. Using only the crystal structure as in-

put, we have calculated the electronic structure for about 60,000 entries in the ICSD using a full-potential lin-

ear muffin-tin orbital implementation (FP-LMTO) (Skriver, 1984) of density functional theory (DFT) within the

local density approximation (LDA). The obtained library is maintained within the electronic structure project

(ESP) and has been made available on the web (Ortiz, Eriksson, & Klintenberg, 2009; Klintenberg, Derenso,

& Weber, 2002a, 2002b). The data-mining process in the search for new strong topological insulators is rather

straight forward. Non-layered small gap materials (≤0.5eV) with an anti-crossing feature at the Γ-point are

identified. Furthermore it is verified that the anti-crossing feature disappears when the spin-orbit interaction

is switched off. The data-mining identifies 17 compounds as potential strong topological insulators and these

are presented in Table 1. These results were then submitted to the condensed matter ArXiv for experimental

verification. Since that time, a number of these materials have been investigated further and some verified by

experiment. These references are given in the last column of Table 1. Note that because the ESP takes crys-

tal structures from the ICSD, all compounds identified in this study exist and have been structurally determined.
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Table 1. Results of the mining algorithm for second generation non-trivial topological insulators. 17 compounds

are identified as new potential topological insulators. ARPES measurements should confirm our findings. The

materials that have been either confirmed or investigated further are cited in the last column. The electronic band

structures, partial and total density of states are given for all materials in the supplementary information

Material Space Structure Structure LDA Other

Group Type Reference gap [eV] Reports

Ca3PbO P m -3 m CaTiO3 Widera & Schaefer (1980) 0.2

Examined further and verified by

Kariyado & Ogata (2011) and

Sun, Chen, Yunoki, Li, & Li (2010)

Sr3PbO P m -3 m CaTiO3 Widera & Schaefer (1980) 0.1

Examined further and verified by

Kariyado & Ogata (2011) and

and Sun et al. (2010)

Ba3PbO P m -3 m CaTiO3 Widera & Schaefer (1980) 0.1

Examined further and verified by

Kariyado & Ogata and (2011)

Sun et al. (2010)

Yb3PbO P m -3 m CaTiO3 Velden & Jansen (2004) 0.2 No further reports

Ca3SnO P m -3 m CaTiO3 Widera & Schaefer (1980) 0.2

Examined further and verified by

Kariyado & Ogata (2011) and

Sun et al. (2010)

Sr3SnO P m -3 m CaTiO3 Widera & Schaefer (1980) 0.1

Examined further and verified by

Kariyado & Ogata (2011) and

Sun et al. (2010)

Yb3SnO P m -3 m CaTiO3 Velden & Jansen (2004) 0.1 No further reports

GdPtSb F -4 3 m AlLiSi
de Vries, Thiel, & Buschow

0.2 No further reports
(1985)

Bi2SeTe2 R -3 m H Bi2Te3 Bland & Basinski (1985) 0.3 Verified by Dai et al. (2012)

Bi2STe2 R -3 m H Bi2Te3 Harker (1934) 0.3 No further reports

PbTl4Te3 I 4/m c m In5Bi3

Bradtmoeller & Boettcher
0.1 Verified by Arpino (2014)

(1993)

BiTl9Te6 I 4/m c m In5Bi3 Doert & Boettcher (1994) 0.1 No further reports

BiTlTe2 R -3 m H NaCrS2 Hockings & White (1961) 0.0* Verified by Chen et al. (2010)

SbTlTe2 R -3 m H NaCrS2 Hockings & White (1961) 0.2 No further reports

Bi2TeI C 1 2/m 1 Bi2TeI Savilov et al. (2005) 0.1 No further reports

GeSb4Te7 P -3 m 1 AgBiSe2

Petrov, Imamov, & Pinsker
0.2 No further reports

(1968)

HgKSb P 63/m m c KZnAs Vogel & Schuster (1980) 0.2 No further reports

*The material has small hole pockets.
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The electronic band structure and partial as well as total density of states for Ca3PbO, P m -3 m.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for Sr3PbO, P m -3 m.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for Ba3PbO, P m -3 m.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for Yb3PbO, P m -3 m.

X M Γ R
-6

-4

-2

0

2

4

6

E
ne

rg
y 

(e
V

)

-40 -30 -20 -10 0 10 20
Energy [eV]

0
50

100
150
200
250

D
O

S
to

t.

0
20
40
60
80

O

0

50

100

150

Pb

0

50

100

150

200

Y
b

Partial- and total density of states

(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for Ca3SnO, P m -3 m.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for Sr3SnO, P m -3 m.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for Yb3SnO, P m -3 m.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for GdPtSb, F -4 3 m.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the
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The electronic band structure and partial as well as total density of states for Bi2SeTe2, R -3 m H.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for Bi2STe2, R -3 m H.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for PbTl4Te3, I 4/m c m.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for BiTl9Te6, I 4/m c m.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for BiTlTe2, R -3 m H.
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The electronic band structure and partial as well as total density of states for SbTlTe2, R -3 m H.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.

16



www.ccsenet.org/apr Applied Physics Research Vol. 6, No. 4; 2014

The electronic band structure and partial as well as total density of states for Bi2TeI, C 1 2/m 1.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for GeSb4Te7, P -3 m 1.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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The electronic band structure and partial as well as total density of states for HgKSb, P 63/m m c.
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(Upper Panel) Black line with spin-orbit coupling and green line without. (Lower Panel) Black line shows the

total density of states in each panel. Red, blue and green show s-, p- and d-type character, respectively.
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Because the starting point in this search for new topological insulators is materials that have already been struc-

turally characterized with X-ray diffraction or neutron diffraction, we speculate that there are more candidate

compounds that belong to the same families of materials, e.g. the inverse perovskites or the Bi2Te3 structure type.
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