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Abstract 
The paper is devoted to the spherically symmetric static problem of General Theory of Relativity (GTR) 
originally solved by K. Schwarzschild in 1916 for a particular form of the line element. This classical solution 
specifies the metric tensor for the external and internal semi-Riemannian spaces for a perfect fluid sphere with 
constant density and includes the so called gravitational radius rg which is associated with the singular behavior 
of the solution. The Schwarzschild solution for the external space becomes singular if the sphere radius reaches 
rg which is referred to as the radius of the Black Hole event horizon. The solution for the internal space gives 
infinitely high fluid pressure at the center of sphere with radius equal to 9/8 rg.  

In contrast to the classical solution, the solution presented in the paper is based on the general form of line 
element for spherically symmetric Riemannian space in which the circumferential component of the metric 
tensor ρ2(r) is an arbitrary function of the radial coordinate. As shown, the solution of the static problem exists 
for a whole class of functions ρ(r). The particular form of this function is determined in the paper under the 
assumption according to which the gravitation, changing the Euclidean space to the Riemannian space inside the 
sphere in accordance with GTR equations, does not affect the sphere mass. The solution obtained for the 
proposed particular form of the line element cannot be singular neither on the sphere surface nor at the sphere 
center. Direct comparison with the Schwarzschild solution for external and internal spaces is presented. 

Keywords: general relativity, spherically symmetric problem, liquid sphere, singularity 

1. Introduction 
In GTR, the material properties of space are specified by the energy-momentum tensor j

iT which must satisfy 
the conservation equation having the following form for a spherically symmetric static problem (Synge, 1960): 
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in which drd /)()(  . Equation (1) is written for the traditional form of the line element in spherical 

coordinates r, θ, φ, i.e., for 
2222222222 )sin( dtchddrdrgds                        (2) 

where g2(r) and h2(r) are the components of the metric tensor, and g is referred to as the metric coefficient. The 
form of the j

iT  tensor depends on the distribution of matter in space. For the sphere with radius R simulated 
with perfect fluid of constant density μ, the components of the energy-momentum tensor are 
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Here, p(r) is the pressure in the fluid. In the external (r ≥ R) empty space surrounding the fluid sphere, the 
energy-momentum tensor vanishes, i.e., 
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In GTR, the tensor j
iT is expressed in terms of the Einstein tensor j

iE  which for the spherically symmetric 
static problem has the following components: 
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The GTR gravitational constant 
4/8 cG                                      (8) 

is linked with the classical gravitational constant G. Substitution of Equations (5)–(7) in Equation (1) satisfies 
this equation identically. So, only three of four Equations (1) and (5) –(7) are mutually independent. The simplest 
set of equations which is traditionally used for analysis includes Equations (1), (5) and (7), whereas Equation (6) 
is satisfied identically (Synge, 1960). Substituting Equations (3) in Equations (1), (5) and (7), we get for the 
internal (0 ≤ r ≤ R) space 
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Subscript “i” specifies the internal space. The solution of Equation (9) must satisfy the boundary condition on 
the sphere surface 

0)(  Rrp                                     (12) 

For the external (r ≥ R) space, Equations (4) and (5), (7) yield 
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Subscript “e” specifies the external space. The solution of Equations (10) and (11) must satisfy the regularity 
condition at the sphere center r = 0, whereas the solution of Equations (13) must reduce to the solution 
corresponding to the Newton gravitation theory for r → ∞. Moreover, the metric coefficient g for the internal 
and external spaces must be continuous on the sphere surface, i.e., 

)()( RrgRrg ei                                  (14) 

The solution of Equations (9)–(11) and (13) which was obtained by K. Schwarzschild in 1916 is well known and 
is described, e.g., by Synge (1960). To demonstrate the properties of this solution calling for the necessity to 
generalize it, brief derivation of this solution is presented below.  

2. Analysis of the Schwarzschild Solution 
Consider first the external space. The general solution of Equations (13) is 
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Determine the integration constants C1 and C2. For r → ∞, Equations (15) must reduce to the solution of the 
Newton gravitation theory (Landau & Lifshitz, 1988), which depends on the sphere mass m through the 
gravitational potential φe, i.e.,  
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Then, Equations (15) become 
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is the gravitational radius. As known (Thorne, 1994), the expression for rg in Equation (18) was originally 
derived by J. Michel in 1783 and P. Laplace in 1796 from the classical expression for the escape velocity for the 
sphere with mass m and radius R, i.e., 

RmGv /2  

Taking v = c, we get R = rg and can conclude that rg is the radius of the sphere for which the escape velocity is 
equal to the velocity of light. Thus, one of the fundamental GTR parameters, i.e. the gravitational radius, actually 
follows from the Newton gravitation theory which does not look natural. 

As follows from Equations (17), ge becomes singular and he is zero if r reaches the gravitational radius rg which 
is referred to as the radius of the Black Hole event horizon (Frolov & Zelnikov, 2011). The history of this effect 
is discussed elsewhere (Thorne, 1994). Particularly, Einstein did not consider the singularity as a physical 
phenomenon and restricted GTR equations to the spaces for which r ≥ 1.5 rg. As has been further proved (Singe, 
1960; Vasiliev, & Fedorov, 2012), the surface with radius rg is located inside the sphere. Hence, the solution in 
Equations (17) which are valid for the external space only is not singular. Moreover, the singularity in the space 
component of the metric tensor in Equations (17) can be eliminated by the proper selection of the coordinate 
frame (Feinman, Morinigo & Wagner, 1995). Nonsingular solutions of the problem under study (e.g., Logunov, 
2006; Hynecek, 2012) have been obtained within the framework of the gravitational theories which are different 
from GTR. 

Consider the internal space for which μ = const, and the solution of Equation (11) is 
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From the regularity condition at r = 0 we get C3 = 0 (Misner, Thorne, & Wheeler, 1973). The metric coefficient g 
must be continuous on the sphere surface r = R, i.e., it must satisfy Equation (14). Substituting g from Equations 
(17) and (19) in Equation (14), we get the following relationship: 
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Then, Equation (19) can be reduced to 
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For rg = 0, Equations (17) and (21) specify the metric coefficients of the Euclidean space. If we substitute rg from 
Equation (18) in Equation (20) and take into account Equation (8) for χ, we arrive at the following expression for 
sphere mass: 

3)3/4( Rm                                    (22) 

This expression corresponds to the Euclidean space. However, the space inside the sphere is not Euclidean in 
GTR. For the metric coefficient in Equation (21), we get the following expression for the sphere mass: 

   












 

 


2

0

2/

0 0

132 1sin
12

sin2
R

gg

gg
i rr

r
R

r
drrgddm             (23) 

in which Rrrg / . If 
gr  is much less than unity, we have approximately 
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where 
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As follows from Equation (24), the sphere mass can be specified by Equation (22) only if 0gr  which 
corresponds to the Euclidean space. But the sphere mass in GTR equations must correspond to the Riemannian 
space and be specified by Equation (23) rather than by Equation (22). However, if we apply Equation (23) to 
calculate the mass, the compatibility condition at the sphere surface in Equation (14) cannot be satisfied by the 
solutions in Equations (17) and (19). Note that these conditions can be formally satisfied for the sphere with the 
mass in Equation (22) if the expressions for the gravitational constant and radius in Equations (8) and (18) are 
generalized as (Vasiliev & Fedorov, 2013) 
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where m is given by Equation (22). 

Thus, if Equation (8) for the gravitational constant and Equations (18) and (22) following from the 
Schwarzschild solution are valid, either the metric coefficients of the external and internal spaces are compatible, 
but the sphere mass corresponds to the Euclidean space, or the sphere mass corresponds to the Riemannian space, 
but the metric coefficient g is not continuous on the sphere surface. 

Finally, determine the pressure acting inside the fluid sphere. Using Equations (10) to express h’/h and Equation 
(21) for gi, we can transform Equation (9) to the following form: 
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Assume that p/μc2 is much less than unity and that rg is much less than R. Neglecting small terms, we can 
simplify Equation (25) as 
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This equation corresponds to the Newton gravitation theory (Love, 1927). The solution of Equation (26) which 
satisfies the boundary condition in Equation (12) is 
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Return to the general case. The general solution of Equation (25) can be written as  
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Satisfying the boundary condition in Equation (12), we arrive at the following final expression for the pressure 
(Synge, 1960): 
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Consider the pressure at the sphere center. Taking 0r  in Equation (29), we get 
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As known (Weinberg, 1972), the denominator of this expression becomes zero at R = Rs = 9/8rg = 1.125rg, and 
the pressure at the sphere center is infinitely high if the sphere radius becomes equal to Rs. It could be natural to 
expect that the singularity occurs if the sphere radius is equal to the gravitational radius. But Rs > rg, and no 
explanation of this result can be found in the existing literature. Moreover, the pressure specified by Equation 
(30) formally exists if the sphere radius is less than Rs. For example for R = 1.1 rg, Equation (30) yields p(0) = 
−8.36 μc2. This result has no physical meaning, because both the pressure and the density must be positive. And 
finally, consider the case R = rg. Taking r = R in Equation (28), we find p = −μc2/3. Thus, the pressure cannot be 
zero on the sphere surface as is required by the boundary condition in Equation (12). To explain this result, 
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consider Equation (26) which is the equilibrium equation corresponding to the Newton gravitation theory. The 
second term in this equation is the body force induced by the gravitation field. Comparing Equations (26) and 
(25), we can conclude that the second term of Equation (25) is analogous to the body force in Equation (26), and 
this term becomes infinitely high on the sphere surface if the radius of this surface becomes equal to rg. However, 
according to the boundary condition in Equation (12), the pressure must be zero on the sphere surface. Thus, the 
body force on the surface is infinitely high, whereas the pressure induced by this force must be zero. Naturally, 
the problem in which the structure of the governing equation is in direct contradiction with the boundary 
condition has no solution. Usually, such situation takes place if the mathematical model of the phenomenon 
under study does not correspond to its physical nature. The mathematical model of the Schwarzschild solution is 
determined by Equation (2) specifying the geometry of the semi-Riemannian space. The space is not quite 
Riemannian because the circumferential metric coefficient is equal to r2 which corresponds to the Euclidean 
space. So, it looks natural to apply a more general form of the line element to study the problem.  

3. General Solution of a Spherically Symmetric Static Problem 
Consider the following form of the line element generalizing Equation (1) as 

2222222222 )sin( dtchdddrgds                       (31) 

Here, ρ(r) is some unknown function which, in general, is not equal to r. For the metric form in Equation (31), 
the governing equations for the internal space (0 ≤ r ≤ R), Equations (9)–(11), become (Singe, 1960) 
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Consider Equation (34) which can be reduced to 
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Integration yields the following general solution: 
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Here, C5 is the integration constant. Assume that ρi(r = 0) = 0. Then, using, as earlier, the regularity condition at 
the sphere center, we get C5 = 0, and Equation (36) reduces to 
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Using Equation (33), we get the following equation for the coefficient hi: 
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Consider the external space (r ≥ R) for which μ = 0 and Equations (13) are generalized as (Singe, 1960) 
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Assume that ρe(r) → r for r → ∞. Then, Equations (39) must reduce to Equations (16) if r → ∞. Determining the 
integration constants C6 and C7, we get the following final expressions for the metric coefficients of the external 
space: 
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in which rg is specified by Equation (18). 

As can be seen, the components of the metric tensor metric coefficients g2 and h2 entering Equation (31) are 
expressed in terms of function ρ(r). It is important that GTR does not provide the equation for this function. The 
fact that GTR equations do not allow us to obtain the unique solution for the metric tensor is known. Moreover, 
some additional coordinate conditions (e.g., de Donder-Fock conditions) are used to supplement the GTR 
equations for the external space (Belinfanter, 1955; Fock, 1959).  

Thus, we need to determine the continuous function ρ(r) which allows us to satisfy the boundary conditions 
similar to Equations (14), i.e., 
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The particular solution which satisfies these conditions is presented below. 

4. Particular Solution 
Recall that the conditions in Equations (41) or (14) are met by the traditional solutions in Equations (17) and (21) 
if χ and rg are specified by Equations (8) and (18) and satisfy Equation (20) which, in turn, results in Equation 
(22) for the sphere mass corresponding to the Euclidean space. In connection with this, introduce the following 
basic assumption: gravitation changes the space geometry inside the solid in accordance with GTR equations, 
but does not affect the solid mass. This assumption can be supported by the following reasoning. Consider a 
solid body whose internal space is Riemannian because of gravitation and assume that the second solid body 
appears in the vicinity of the first one. Then, the gravitation induced by the second body changes the geometry of 
space inside the first body, but it does not change the body mass. For the metric form in Equation (31), the 
sphere mass is 
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the sphere mass becomes equal to the mass specified by Equation (22) corresponding to the Euclidean space. 
Then, Equation (20) is valid, and Equation (37) takes the form 
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Now, we can use Equations (42) and (43) to determine the function ρi(r) from the following equation:  
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Presenting the left-hand side of Equation (45) with the power series, we get 
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Using the condition at the sphere center, i.e. 0)0( ri , we can conclude that 0)( gi rf . Then, Equation 
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(47) yields ri   for 0gr  which corresponds to the Euclidean space. Introducing a new variable 
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we can transform Equation (45) to the following final form: 
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Consider the external space for which we need to determine the function ρe(r) and to satisfy the compatibility 
conditions in Equations (41). To meet these conditions, assume that Equation (42) is valid not only for the 
internal space, but for the external space as well, i.e., 
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This result, in conjunction with Equation (42), shows that if the first condition in Equations (41) is satisfied, the 
second condition is satisfied automatically. Thus, we need to meet only one compatibility condition on the sphere 
surface, i.e., ρi = ρe. Substituting the first equation of Equations (40) in Equation (52), we arrive at the following 
equation for ρe: 
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In the notations specified by Equations (46), the solution of this equation is 
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To determine the integration function )( ge rf , apply the first compatibility condition in Equations (41). Taking 

1r  and 
1)1()1(   rr ei
, we get the following expression: 
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Dividing Equation (52) by 3
e , we can prove that re   for e  which, in conjunction with Equation 

(50) providing 1)(  rg ee  , means that the external space reduces to the Euclidean space with the infinite 
increase of the radial coordinate. 

Thus, Equations (42), (48), (49) and (50), (52), (53) satisfy the GTR equations, as well as required asymptotic 
and boundary conditions. Perform the analysis of the obtained solution. Consider first Equation (49). Taking 

1r  and putting 
1)1(  ri
, we can plot the dependence of the metric coefficient 

1  on the normalized 
gravitational radius 

gr  which is shown in Figure 1. Second, consider Equation (53). As follows from this 
equation, the function )( ge rf  is real if 

gr1 . The line corresponding to 
gr  is also plotted in Figure 1. The 

coordinates of the intersection point 896789.01  u
g

u r  specify the ultimate values of 1  and 
gr . These 

coordinates correspond, in accordance with Equations (46), to the sphere radius Rg = 1.115 rg. For R < Rg, the 
obtained solution becomes imaginary.  

So, we have found some critical radius of the sphere R = Rg which is similar to the gravitational radius rg. 
However, first, Rg does not coincide with rg and, second, if the sphere radius R becomes equal or less than Rg, the 
solution does not demonstrate singular behavior – the real solution does not exist. Dependences )(r  are 
shown in Figure 2(a) for 5.0gr  and 88.0gr  which is close to u

gr . The straight line r  corresponds to the 
Schwarzschild solution. Dependences )(rg  are presented in Figure 2(b) for 0gr  (Euclidean space), 

5.0gr  and 88.0gr . Solid lines correspond to the obtained solution, whereas dashed lines – to the 
Schwarzschild solution. As can be seen, the obtained solution does not demonstrate the tendency to singular 
behavior on the sphere surface. 
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Figure 1. Dependence of 1  on 

gr  

 

(a) 

 
(b) 

Figure 2. Dependences of the metric coefficients (a)   and (b) g  on r  

 

Finally, determine the pressure acting in the fluid sphere. The conservation equation which is analogous to 
Equation (25) and follows from Equations (32), (38) and (43) with allowance for Equations (8) and (20) can be 
presented as 
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The solution of Equation (54) which has the same form that the traditional equation, Equation (25), but includes 
ρi instead of r as the independent variable is similar to Equation (28), i.e., 
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The boundary condition on the sphere surface is p(ρ1) = 0 in which, as earlier, ρ1 = ρ(r = R). Determining the 
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constant C8, we finally get 

32
1

32

32
1

32

2

/13/1

/1/1
)(

RrRr

RrRr
cp

gig

gig

i








                      (55) 

The pressure at the sphere center )0( i  is 

32
1
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


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                             (56) 

The dependence )(1 gr  entering this equation is presented in Figure 1. Normalized pressure at the sphere 
center 2/ cpp   is shown in Figure 3 as a function of the dimensionless gravitational radius. Dashed curve 
corresponds to the Schwarzschild solution in Equation (30) which demonstrates singular behavior for 9/8gr . 
Solid line corresponds to the solution in Equation (56). The maximum pressure takes place for u

gg rr   and is 
finite ( 2725.0 cp  ). Distribution of the normalized pressure on the radial coordinate for 5.0gr  and 

9/8gr  is presented in Figure 4. Dotted line corresponds to Equation (27), i.e., to the Newton theory, dashed 
lines correspond to the Schwarzschild solution in Equation (29), and solid lines – to Equation (55). As can be 
seen, the obtained solution does not demonstrate singular behavior. 

 

 

Figure 3. Dependences of pressure at the sphere 
center on gr  

Figure 4. Distribution of pressure over the sphere radius

 

5. Conclusion 
Thus, the general line element form of the spherically symmetric Riemannian space in Equation (31), in contrast 
to the traditional form in Equation (2), allows us to construct the space whose metric coefficients and pressure in 
the fluid sphere do not demonstrate singular behavior. The solution specifes the minimum possible radius Rg of 
the fluid sphere which does not coincide with the classical gravitational radius rg. For the sphere with radius R < 
Rg, the solution of GTR equations becomes imaginary. 
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