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Abstract 
On the basis of critical analysis of literature it is shown that the existing theory of surface gravity waves is 
incorrect and contradictory. Based on the new results published by the author dispersive equation for linear 
waves generated on the surface of tangential discontinuity between air and water was obtained. It is 
demonstrated that this equation is applicable only to capillary waves and effect of gravitational filed can be 
neglected in it. Thus, it is impossible to speak about capillary-gravitational waves in linear theory and 
consequently there is no condition restricting length of capillary wave. Contrastingly to the wide-spread opinion 
according to which capillary waves are generated only in deep water, it is demonstrated that they can be 
generated in shallow water as well where the phase speed of wave depends on the depth of water reservoir. 

Keywords: tangential discontinuity, surface gravity waves, capillary-gravity waves, weakly inhomogeneous 
medium, strongly inhomogeneous medium, potential flow 

1. Introduction 
Problem of generation and propagation of waves on the surface of division of two media are solved with the help 
of the theory of hydrodynamic tangential discontinuity. The problem of gravitational waves on the surface of 
water reservoirs is one of the most vital among the problems of this type. As is known two limit cases are 
considered for gravity waves: 

(1) Shortwave disturbances when the wave length λ is much smaller than the fluid depth h  ,1( kh  where 
2k  are called wave number). In this case, the water is considered infinitely deep and the influence of 

surface tension of fluid is taken into account. Waves generated in such conditions on the water surface are called 
deep water waves or capillary-gravity waves. 

(2) Long wave disturbances when the wave length λ is much greater than the fluid depth h  ( 1kh ). In this 
case the surface tension influence is ignored and generated waves are called waves on shallow water. 

According to the existing theory, the spectrum of frequencies of capillary-gravity waves is calculated by the 
formula 
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where α is coefficient of surface tension of water, ρ is its density while g is acceleration of gravity. If the 
requirement is met 

  2/1/gk                                   (1.2) 

capillarity effect can be neglected. Taking into consideration that for water α = 0.073 N/m and ρ = 103 kg/m3, it is 
easy to calculate that the wave, length of which is λ > 1.73 cm, is purely gravitational, frequency of which in 
deep water (th(kh) ≈ 1) is 

kg                                       (1.3) 

In the second case, taking into consideration that α = 0 and th(kh) ≈ kh, we will have 

ghk                                       (1.4) 
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These formulae form the basis for a great deal of fundamental researches and are widely used in solution of 
applied problems. For example, phase speed of tsunami waves is calculated according to formula (1.4) (Kowalik, 
2012; Ocean Waves, 2013; The shallow water wave …, 2011). 

Correlation of (1.1), (1.3) and (1.4) follows from the Kelvin theory who was the first to solve the problem of 
surface capillary-gravity waves in 1871 (Landau & Lifshitz, 1988, See §62). His theory was based on the 
assumption of potentiality of fluid motion in the Earth gravity field. On the other hand it is known that fluid 
motion can be potential only in isentropic medium when entropy is equal in any of its points, i.e. consts   
(Landau & Lifshitz, 1988, See §§8,9). In the Earth gravity filed this condition is violated since entropy depends 
on vertical coordinate z and thus we assume that these correlations are doubtful and require to be revised. 

To verify our doubts, in the second section we provide review of relevant paragraphs of the monograph (Landau 
& Lifshitz, 1988) and on the basis of analysis thereof demonstrate shortcomings of modern theory of 
hydrodynamic tangential discontinuity. In the third section, based on the generalized equation of gravity waves 
obtained in linear approximation in the paper (Kirtskhalia, 2012a) we derive an equation for surface 
capillary-gravity waves and demonstrate that the linear theory describes only capillary waves. Consequently, 
non-linear members must be taken into account in the system of hydrodynamic equations when considering 
gravity waves. 

2. Modern Understanding of Surface Gravity Waves 
Intensive studies of mechanisms of generation and propagation of gravity waves on the surface of water 
reservoirs began after L. Euler had formulated his fluid flow equation in 1755. Since then this issue has been 
treated in a great number of scientific works analysis of which is beyond the scope of this survey. We will 
refectory the reader mainly to the monograph of (Landau & Lifshitz, 1988) and bring only the most typical 
examples reflecting the shortcomings related to solution of this problem and showing that modern theory of 
gravity waves is incorrect and needs to be revised. 

Dynamic processes occurring in fluids (gases) are described by the system of hydrodynamic equations which 
includes: 

The flow equation (Euler’s equation) 
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The continuity equation 
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The adiabatic equation 
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where p is pressure, V


 is velocity and s is entropy. Exact solution of this system in general case is impossible, 
so scientists have to use approximate method of small disturbances when variables included in the system of 
Equations (2.1-2.3) have the form of the sum of their stationary and disturbed values      trfrftrf ,, 0

  , 

where 10  ff  and 

),( trf
 =     tkxizf  exp

~
                            (2.4) 

When using this method, the system (2.1-3) should be complemented with two equations: 

The equation of equilibrium in the gravity field of the Earth 

gP


00                                      (2.5) 

The medium state equation 

p
C


2

1                                     (2.6) 

where C denotes the sound propagation velocity in a medium defined by means of its termodynamic 
characteristics. 

This method for solution of the problem of stability of tangential discontinuity on the plane interface of two 
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semi-bounded incompressible C = ∞ fluids (waves in deep water) without taking into account the influence of 
surface tension force and gravitation was first used by Helmholtz in 1868. He showed that the solutions of 
dispersion equation are two self-conjugate complex numbers (Landau & Lifshitz, 1988, See §29) 

21
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i

kV                                 (2.7) 

where 
0V -is speed of relative motion of fluids along plane surface of discontinuity. For the root with a positive 

imaginary part  0Im  , the wave amplitude increases with time, which means that the tangential discontinuity 

under consideration is absolutely unstable. Doubtful of solution of (2.7) is obvious, since from it follows that 
distribution of wave on the interface of two incompressible fluids at rest  00 V  is impossible. 

In 1944 Landau solved the problem of Helmholtz for compressible fluids with similar densities and discovered 
that such tangential discontinuity is stable when CV 2/3

0 2  (Landau & Lifshitz, 1988, See §84) and 

consequently, in compressible fluids tangential discontinuity is stable only in case of supersonic flows. This 
result contradicts to the Helmholtz result, according to which arbitrarily small speed of relative motion of fluids 
leads to instability of tangential discontinuity. Doubtfulness of its result was admitted by Landau himself 
(Landau, 1969). In the paper (Kirtskhalia, 1994) mistake was found in the method of solution of relevant 
dispersive equation and it was shown that such tangential discontinuity is also absolutely unstable. 

The Helmholtz problem with account of forces of gravity and surface tension was solved by Kelvin in 1871 
(Landau & Lifshitz, 1988, See §62). Assuming the flow to be potential, Kelvin introduced the velocity potential 

),( tr
  satisfying the Laplace equation 

  0,  tr
                                     (2.8) 

and related to the flow velocity of incompressible fluid by equation 

V


                                     (2.9) 

The fluid pressure is defined by integration of the Euler’s equation with application of (2.9) as well as condition 
of motion potentiality 0Vrot


 (Landau & Lifshitz, 1988, See §9): 
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where z is the coordinate along the axis normal to the surface of discontinuity. Assuming that the upper fluid 
moves with respect to the lower fluid along axis X with velocity V0. The velocity potentials satisfying Equation 
(2.8) are written in the form 

0,)cos( 011   zxVtkxeA kz                         (2.11) 

0),cos(22   ztkxeA kz                         (2.12) 

Here it is accepted that the equation of discontinuity surface is z = 0. The difference in the exponent signs is 
explained by the requirement of decay of disturbances as the distance from discontinuity surface increases 
(surface waves). The constants А1 and А2 are assumed to be small values since they correspond to the disturbed 
values of the potentials. At the discontinuity surface the following conditions must be fulfilled: 
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where ξ is displacement of discontinuity surface along the Z-axis; νz1 and νz2 are the z-components of the 
perturbed velocity values in areas z > 0 and z < 0 respectively. Condition (2.13) with consideration of (2.10) is 
written as follows 
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where 2
1V  = 2

1)(  . Representing ξ as 

)sin( tkxa                                    (2.17) 

and substituting (2.11), (2.12) and (2.17) into the boundary conditions (2.14), (2.15) and (2.16) Kelvin obtained a 
system of three linear homogeneous algebraic equations with respect to the coefficients А1, А2 and a (the terms 
containing 2

1A  and 2
2A  are neglected). Equating the determinant of this system to zero, he finds the dispersion 

equation whose solution is 
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For α = 0, g = 0, Kelvin’s solution (2.18) transforms to Helmholtz’ solution (2.7), and when V0 = 0 and α = 0 
gives the dispersion Equation (1.3). From (2.18) it follows that the stability condition of capillary-gravity waves 
on water surface is the non-negativity of the expression in the square brackets, i.e. 
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By solving inequality (2.19) with respect to k we find that the negativity of its discriminant gives condition of 
stability of tangential discontinuity for any k in the form 
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On the other hand, having solved (2.19) with respect to V0, we find the stability condition in the form 
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It can be easily demonstrated that minimum value of the right part of inequality (2.21) is reached when 

   120  gkk  and equals to the right part of inequality (2.20), however these conditions contradict to 

each other. Indeed, from (2.20) it follows that if 00 V  the tangential discontinuity can be stable only in 

presence of both factors – the surface tension and the gravity field while according to (2.21) each of the 
parameters g and α makes its own contribution to the stability of the tangential discontinuity as it may be stable 
if one of them is absent. These contradictions which were first highlighted in the work (Kirtshalia & Rukhadze, 
2008) are quite sufficient to get sure that the Kelvin theory is erroneous; however correlation (1.1) is considered 
classic up to now. 

The basic reason of erroneousness of the Kelvin theory is violation of condition of potentiality of fluid motion, 
according to which motion can be potential only in isentropic medium. Indeed, in the Earth gravity filed z 
component of disturbed velocity must depend on gravity acceleration g, which must be taken into account in 
potentials of velocities (2.11) and (2.12). However, in this case the condition of potentiality of fluid motion 
∂νx/∂z = ∂νz/∂x is impossible to be met and consequently, the problem in such setting is unsolvable. That is why 
the constant term –V0

2 is artificially introduced in the right side of the Equation (2.16). 

The other threshold case—long gravity waves (waves on shallow water) is considered in monograph (Landau & 
Lifshitz, 1988, See §12). The authors solve the problem of wave propagation on water surface in gravity filed of 
Earth along the canal (along the axis X) with depth h and width b when V0 = 0. Having applied the system of 
Equations (2.1) and (2.2) the authors obtain phase speed of wave on the shallow water in the form 

gh
k

U p                                    (2.22) 

which coincides with the expression (1.4). The Equation (2.3) is not used at all, assuming that it is satisfied 
identically. As is shown in the papers (Kirtskhalia, 2012a; 2012b). this is the fundamental error leading to 
incorrect solution of the problem on the whole. Indeed, the authors assume that νz is so small, that ∂νz/∂t = 0. On 
this assumption, they write down the x and z components of Euler’s Equation (2.1) in the form 
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Thereafter they are integrated the Equation (2.24) subject to 

0pp
z




                                    (2.25) 

and find 

 zgpp  0
                                (2.26) 

Without going into further details, the said is quite sufficient to get sure that the ultimate result (2.22) here is also 
obtained by means of incorrect solution of the problem: 

Firstly – the Equation (2.24) is nothing else but the fluid equilibrium condition in the Earth gravity field (2.5), 
which is fair only for stationary values of pressure and density and consequently, subject to fulfillment of this 
condition oscillations are impossible. 

Secondly – from condition (2.25) it follows that pressure is constant on the disturbed liquid surface and thus it is 
unclear how the wave is propagated in this case. 

Thirdly- the requirement ∂νz/∂t = 0 equals to the requirement νz = 0 meaning that liquid surface is not displaced 
along the axis Z. Notwithstanding this the authors mark this displacement through ξ and obtain wave equation 
for it. 

Solution of the task No.2 (Landau & Lifshitz, 1988, See §12) seems to be the most correct. Assuming that α = 0 
and V0 = 0, and considering motion to be potential, the authors find the dispersive equation for gravity waves on 
interface of two liquids, density and depth of which equal to ρ1, h1 and ρ2, h2 respectively. Dispersive equation is 
obtained in the form 
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Three cases are considered: 

1. Both liquids are infinitesimally deep (kh1 >> 1 and kh2 >> 1) and then the Equation (2.27) gives 
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2. Depth of both liquids is small (kh1 << 1 and kh2 << 1), and then we have 
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3. The lower liquid is shallow while the upper liquid is deep (kh2 << 1 and kh1 >> 1) which results in 
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For ρ2 >> ρ1, (2.28) and (2.30) give the results (1.3) and (1.4), respectively. Mathematical correctness of solution 
of this task is conditioned by absence of relative motion of liquids (V0 = 0). However, incorrectness related to 
physics remains in force and consequently it can be claimed that solution (2.27) is erroneous. 

As was mentioned above, this problem is dealt with in a great number of scientific works which give the 
analogous results and therefore it is senseless to consider them here. 

3. Capillary Waves 
In the paper (Kirtskhalia, 2012a) it was demonstrated that the known system of hydrodynamic (gas dynamic) 
equations is fair only for homogeneous media which do not exist in the nature. This system needs to be 
generalized for real inhomogeneous media which qualitatively changes a number of existing notions on dynamic 
processes occurring in them (Kirtskhalia, 2013). 

In the paper (Kirtskhalia, 2012a) a generalized equation of gravity wave in inhomogeneous medium is obtained 
in linear approximation, which is given by 
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Here 
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is squared speed of sound in the medium which is reduced from squares of adiabatic Cs and isobaric Cp of sound 
speeds (Kirtskhalia, 2012a, 2012b). Existence of isobaric speed of sound associated with propagation of isobaric 
perturbation of density leads to necessity of generalization of the equation of mass discontinuity for 
inhomogeneous medium. Detailed presentation of the procedure which provides this equation in the form of 
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is set out in the paper (Kirtskhalia, 2012a). From (3.3) it is obvious that the equation of mass discontinuity 
accepted in the existing theory is fair only for homogeneous medium when Cp = ∞. Consequently, homogeneous 
medium cannot be considered incompressible  0v


 since in such case ρ = const and generation of 

mechanic wave in it is impossible. Thus, the Equation (3.3) provides qualitatively new definition of criteria of 
compressibility and incompressibility. This issue is extensively considered in the paper (Kirtskhalia, 2013), 
where it is proved that weakly inhomogeneous medium is always compressible while strongly inhomogeneous 
medium is always incompressible. Absence of such understanding of criteria of compressibility and 
incompressibility is one of the main reasons of incorrectness of wave theory in gas and hydrodynamic in whole 
(e.g. internal gravity waves (Kirtskhalia, 2013)), and in the theory of surface gravity waves in particular. 

Let us now consider the correct linear theory of surface waves with consideration of surface tension force and 
gravity. Assuming that the surface of tangential discontinuity between water and air is plane z = 0. Having 
ignored the third summand in Equation (3.1) due to its obvious smallness and taking into consideration that 
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Since in the Earth atmosphere at sea level Cp = ∞ (Kirtskhalia, 2012a; 2012b), air should be considered 
compressible (C = Cs) and for it the Equation (3.4) will be as follows: 

0
11

2
1

2

2
1

12
1

1 





t

p

C
p

C
gp

ss

                            (3.5) 

Let us present p1 in the form of 
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following which the Equation (3.5) will be as follows: 
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Solution of the Equation (3.7) with consideration of decay of waves when z (surface wave) is 
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kU p  - is the phase speed of wave and 1sC  is sound speed in air at sea level. 

For water the Equation (3.5) will be as follows: 
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From determination of isobaric speed of sound (Kirtskhalia, 2012b) we can easily find 
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where β = (1/V)(∂V/∂T)p – is the coefficient of thermal dilatation and cp – is thermal capacity of unit mass of 
substance at constant pressure. For water β = 1.5×10-40 K-1, cp = 4.19×103 J/kg·K and then from formula (3.13) at 
temperature T = 288 K we will get Cp2 = 25210 m/sec. On the other hand, by of experiment sound speed in water 
at the same temperature to a high accuracy equals to C2 = 1480 m/sec. Then from formula (3.2) we have 

6.1482/ 2
2

2
2222  CCCCC pps

 m/sec. As we see, in water sound speed practically equals to adiabatic sound 

speed i.e. C2 = Cs2. Similar calculations for example for iron (β = 33.9×10-60 K-1, cp = 476.4 J/kg·K, T = 288 K, 
Cp = 38968 m/sec, C = 5130 m/sec) give Cs = 5175 m/sec, and sound speed in iron is also adiabatic (C= Cs). 
Consequently, according to the new determination of criteria of compressibility and incompressibility 
(Kirtskhalia, 2013), water and iron should be considered compressible media in terms of thermodynamics and 
incompressibility condition 0v


 must not be applied to them. Moreover, paradoxical as it may seem, water 

and iron are more compressible than air in upper layers of the atmosphere like, for example at a height of 11 km, 
Cs ≈ Cp ≈ 300 m/sec (Kirtskhalia, 2012b). Thus, the terms “compressibility” and “incompressibility” in 
thermodynamics characterize not the state of aggregation of matter, but physical process of sound propagation in 
it. 

Taking into consideration that C2 = Cs2, solution of Equation (3.5) for amplitude of pressure disturbance in water 
gives 
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Thus, for disturbed values of pressure in air and water we will have 

      tkxikzAtzxp   expexp,,1
                        (3.17) 
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After use of equilibrium condition (2.5) and medium state Equation (2.6) when C = Cs the linearized Euler’s 
equation will be as follows: 
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Having represented in (3.19) all variables in the form (2.4), for amplitude of the z component of disturbance 
velocity we will get 
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From (3.20) for air and water respectively we will have 
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As we see disturbance velocity in area z > 0 as well as in area z < 0 obviously depends on g, which does not 
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occur in Kelvin theory (Landau & Lifshitz, 1988). Now, to boundary conditions (2.13), (2.14), and (2.15) when 
V0 = 0, should be added the condition on the bottom of water reservoir 

02  hzzv                                 (3.23) 

and substituting values of relevant quantities from formulae   tkxia   exp  (2.17), (3.17), (3.18), (3.21), 

and (3.22) into these conditions, we will get the system of linear homogeneous algebraic equations regarding 
coefficients A, B1, B2, and a. Equating the determinant of this equation to zero, we shall find dispersive equation 
of linear surface capillary-gravity waves in the form of 
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Let us consider condition θ1 > 1. Taking into consideration that at sea level Cs1 ≈ 340 m/sec and g ≈ 10 m/sec2 we 
shall find k > 8.64×10-5 m-1 or λ < 0.72×105 m. Thus, this condition covers the whole range of wavelengths from 
capillary to tsunami and the bigger is k the better it is met. For instance, when the value of gravity wave length is 
λ ≈ 100 m, for air θ1 ≈ 0.71×103 >> 1 while for water θ2 ≈ 0.14×105 >> 1. It is also apparent that 
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2  spsp CUCU  and then it is easy to check that δ1 = γ* = 1 and δ2 = −1, following which dispersive 

Equation (3.24) is reduced and takes the form 
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As we see, the Equation (3.26) does not contain gravity acceleration g and does not have solution when α = 0, 
thus it can be concluded that linear theory of surface capillary-gravity waves is adequate only for capillary waves 
on which gravity field has no effect. Furthermore it is obvious that when α = 0 and g = 0 the task loses its 
physical meaning and therefore the solution of Helmholtz (2.7) does not contain any information. Taking into 
consideration that ρ1 << ρ2 = ρ, the solution of the Equation (3.26) shall be 
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Solution (3.27) invalidates the current opinion that capillary waves are generated only in deep water. We see that 
they are generated in deep (kh > 1, th(kh) ≈ 1) as well as in shallow (kh < 1, th(kh) ≈ kh) water. In the first 
instance dispersive equation is given by 
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 k
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And in the second one 


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k 2                                   (3.29) 

Since condition (1.2) limiting the length of capillary waves no longer exists, let us consider perturbation with 
wavelength λ = 0.1 m (k = 62.8 m-1) for which from formulae (3.28) and (3.29) we will obtain that in deep water 
(h ≥ 0.5 m) ω = 0.13 sec-1 and Up = 2 cm/sec and in shallow water (h = 0.05 m) ω = 0.07 sec-1 and Up = 1 cm/sec. 

As we see, frequency and phase speed of capillary wave drop two times when depth lowers 10 times. 

4. Conclusion 
The above critical analysis and calculations conclusively prove that the existing theory of surface 
capillary-gravity waves is incorrect and contradictory. The reason is an essential error made by Kelvin as far 
back in 1871, excluding assumption on potentiality of motion of liquids in the gravity field of the Earth. 
Consequently, problems of surface gravity waves should be solved only on the basis of system of hydrodynamic 
equations. However, here again the scientists make significant mistakes, since they seek to obtain results 
coinciding with the results of Kelvin. They are conditioned by incorrect understanding of criteria of 
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compressibility and incompressibility of medium. The present paper demonstrates that these contradictions were 
eliminated after their correct definition had been provided in the paper (Kirtskhalia, 2013). On the basis of this 
correct definition equations of gravity waves in linear approximation are obtained for each of these media and by 
sewing (joining) their solutions on the surface of tangential discontinuity dispersive equation is obtained for 
surface wave. It is shown that the equation is solved only if surface tension of liquid is taken into consideration 
i.e. it describes only capillary waves on which influence of gravity filed is small to negligible. It was to be 
expected, since the Equation (3.5), describes acoustic waves (Kirtskhalia, 2012a) and consequently, is suitable 
only for linear waves amplitudes of which are comparable to amplitudes of acoustic waves. Agreement of result 
(3.28) with the result of Kelvin (1.1) when g = 0, is explained by the fact that in such instance motion of fluid 
can be considered potential and Kelvin theory gives correct result. Thus, capillary-gravity waves do not exist in 
linear theory, since surface wave is always capillary and can be propagated in deep as well as shallow water. 
When considering gravity waves in the system of hydrodynamic equations nonlinear members must be taken 
into account. 
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