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Abstract 

In two previous papers, we showed that that the observed elementary particles masses spectrum agrees with a 
single resonance equation. Using those results we show that the resonance numbers address three distinct 
resonance schemes – one for each symmetry U(1) and SU(3), and one for massive bosons; we then deduce, from 
the equation parameters, a unique fundamental field “below” the standard model fields and forces, which we 
interpret as electric and magnetic poles and magnetic currents.  

Keywords: mass spectrum, standard model, forces unification 

1. Introduction 

1.1 Context 

The standard model (SM) of particles physics is based on three fundamental symmetries and conservation laws, 
namely SU(3) x SU(2) x U(1), quantum numbers, energy and momentum, and a scalar field. Current theoretical 
research digs beyond and expects new particles, or their absence, to verify or rule out new theories; an important 
motivation to this search is the so called absence of naturalness. In particular the elementary particles mass 
spectrum looks quite random and SM provides no solution to its origin. 

In this paper we start from phenomenology. The analysis is based on a resonance equation that was shown in 
agreement with the estimated mass of all known particles, including the Higgs boson. We will show that the 
resonance numbers are natural with respect to geometry and charges, and that a unique field is there. We 
interpret the field as made of two and only two types of charges and currents: electric and magnetic.  

1.2 Methodology 

In two previous papers (Consiglio, 2012a, 2012b), we showed that the following resonance equation matches all 
known and estimated masses (i.e. pole masses coming in the SM Lagrangians): 

m = X / (K D + 1/N P)3 + μ                         (1) 

Where: 

- X is a density (assumed universal). 
- K, N, and P are small integral numbers (or a fraction in one case). 
- D is a distance specific of the particle group (electrons, quark, or massive boson). 
- μ is a small “naked mass” specific of the particle group (that we compute where possible). 

The initial model leading to (1) is an absorber theory based on a resonance driven absorption/emission process 
and the existence of a pressure field X, where particles masses correspond to an exclusion or depletion volume of 
radius (K D + 1/N P). Essentially, a single fundamental resonance exists (K = 0, N = P = 1) and particles occupy 
specific double-harmonics NP. The KD shifts the mass in a particle-dependent way; D is specific to each group 
of particles (electrons, quarks, and massive bosons) while N, P, and K are particle-dependent. The trick is that 
KD is assumed quantized, and we shall see that it holds quite well and gives interesting insights. 

On this basis it is legitimate to work a link with the SM Higgs field, and hopefully the weak and strong forces; 
but the problem is that with Equation (1) we are almost blind. It contains no information related to different 
symmetries or charges; we do not even know what kind of space it addresses. However, consider that KD is 
quantized, and unit-less, and depend on the particles group to which (1) is applied. Its quantization should relate 
to a potential where we should find known coupling constants.  
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We will then search for formal coincidences with the values of these parameters (D and μ). We naturally expect 
some simple expression in α for electrons, αS for quarks… We also expect random coincidences and we must 
avoid their use in the reasoning; the method requires caution.  

Similarly, the resonance numbers N, P and K cannot be random; they must depend on the resonance structure 
and, since the resonance is double and shown group-dependent, it is legitimate to use the results (specific 
numbers N, P, K and parameters) to deduce some information related to the resonances geometry.  

2. Particles Mass, Tracking Coincidences 

2.1 Electrons 

Table 1 shows the numbers we found for the electron, muon, and tau. The search was not systematic (manual), 
and then not exhaustive; but the numbers we found (N, P, K, and mass μ) are minimal.  

 

Table 1. Electrons, muon, tau. * MeV/c2 

Particle P N K Computed (*) Measured (*) 

Electron 2 2 2 0.510 998 928 0.510 998 928(11) 

Muon 5 5 3 105.658 3715 105.658 3715(35) 

Tau 9 9 5 1776.84 1776.82(16) 

Parameters are: De = 0.00085322189, μ = 241.676611 eV; X is not a free parameter.  

 

We first notice that the N, P, K are quite small, and obey a regular pattern (N = P, and K successive primes); the 
result in Table 1 is not far-fetched – it looks naturally plausible. The values of K are all positive; in a spatial 
representation of resonances, it corresponds to a repulsive force that we assume related to the electric field. 

Equation (1) comes from an absorber theory and then we should check our results with respect to quantum 
electrodynamics (QED). Bethe (1947) computes the hydrogen Lamb shift; he gets: 

ΔE = (α5me c
2/6π) log (me

2 c2/8.9 α2 me
2 c2) 

where me is the electron mass; the expression in the logarithm depends on the cutoff and gives a ratio between 
the electron’s self-interaction and absorption, which, in our case, should be μ and (me – μ) respectively; we find: 

(me – μ)/μ = 1/8.8857 α2           (2) 

The relative difference with respect to Bethe’s result is 1.6·10-3 (or 2·10-4 for ΔE) and then μ is relevant.  

We then notice a first coincidence: 

  (me – μ) / μ = √2 / 4π α2             (3) 

The relative difference in (3) with respect to √2 is ≈ 1.25·10-5, it gives a difference in mass Δμ ≈ 3 meV, which is 
well within uncertainty of the electron mass precision (± 11 meV). The factor 4π can be related to dispersion and 
the √2 can come from a squared mass or from geometry. The coincidence could then relate to the absorber 
scheme (See also addendum 2, a conceptual correspondence with QED, and an analysis consistent with (3)). 

Since we only analyze ratios of mass and distance, De is unit-less; a second coincidence is:  

De = 16.0225 α2           (4) 

Surprisingly, (4) is also a coincidence in αS, the strong force coupling constant. This is a little shocking since 
electrons are not sensitive to the strong force. Now αS is running and not known with very high precision, then 
we will use αS = 0.11692; we get:  

De = αS
 α              (5) 

2.2 Quarks 

Table 2 shows the numbers we found for quarks.  

The density X is unchanged with respect to electrons; all masses are deduced from the electron mass using 
resonances but require a minor adjustment of D. The adjustment is necessary to fit the top quark mass range, 
since using Dq = De gives mt ≈ 162 GeV/c2.  
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Table 2. Quarks resonances. (*) MeV/c2 

Particle Charge P N K Computed (*) Min (*) Max (*) 

Up 2e/3 3 14/7  –6 1.93  1.7 3.1 

Down e/3 3 19/7 –6 5.00 4.1 5.7 

Strange e/3 3 7 –6 106.4 80 130 

Charm 2e/3 3 14 –6 1,255 1180 1340 

Bottom e/3 3 19 –6 4,285 4130 4370 

Top 2e/3 3 38 –6 172,380 171700 173300 

Parameters: Dq = De (1 + α) = αS
 α (1 + α); and μ cannot be found with current quarks’ mass precision.  

 

In Table 2, we remark:  

- Only N varies in Table 2; all NPs are harmonics of the same resonance (P = 3). 
- All quarks with charge 2/3 have N even; all quarks with charge 1/3 have N odd or odd fractional (19/7). 
- In generations 2 and 3, quarks have a ratio of 2 between Ns, but the first generation is different. 
- We use a fraction (N = 19/7) for the down; it gives a well centered mass and consistent harmonics. 
- We get a nice harmonic progression in N with ratios 2, 7, and 19.  

Actually, quarks do not fit with mass series organized by generation, but by resonance + electric charge; it 
implies a direct connection between electricity and resonance and then between electricity and mass.  

Starting with the up, the harmonic progression in N is: 

- N(u) × 7  → N(c)  (same charges). 
- N(c) × 1/2 → N(s)  (charge and resonance divided by 2). 

Starting with the down: 

- N(d) × 7  → N(b)  (same charges). 
- N(b) × 2  → N(t) (charge and resonance multiplied by 2). 

Then a ratio 7 in N conserves the charge while a ratio 2 changes it; the connection is obvious. 

In Table 2, K is a constant negative number; it shows (if compared to electrons) that an attractive force is also at 
work that reduces the exclusion volume, but the repulsive force is still there since quark masses are not infinite. 
The constancy of K also shows that (1) cannot be changed (or tricked) to eliminate D, which is then significant. 
The shift in mass related to KDq is not negligible if compared to the resonance; it ranges from 1/6/6D ≈ 32.32 for 
the up quark, to 1/38/6D ≈ 5.10 for the top quark. 

We find a coincidence quite similar to (3) (and already shown in Table 2 parameters):  

Dq = De (1 + α) = αS
 α (1 + α)        (6) 

Then using quarks electric charge (±1/3, ±2/3) (and still assuming that the repulsive force in electrons is due to 
their electric charge,) the forces at work in quarks and electrons are possibly related to a magnetic current, and 
quarks hold a magnetic charge that is roughly opposite to the Dirac condition. Assume that the repulsive force 
coefficient for electrons is a product k e g, it will give k e g/3 or 2 k e g/3 for quarks. In the expression k e g, the 
coefficient k is the cosine of the vertex angle of the Poincare cone, and then k < 1. Then assuming quarks have a 
magnetic charge gq, since the difference between Dq and De in (5 – 6) is 1 → (1 + α), the α comes from the quark 
magnetic charge and implies α k e g/3 ≈ gq g/3. Hence gq is roughly bounded by |gq| < 2 α e/3.  

2.3 Massive Bosons 

SM considers that the W±, Z0 and H0 acquire their masses from a unique potential minimum which, in our logic, 
should correspond to the same resonance. This is what we find in Table 3 (Note that we use the ATLAS average 
estimate of the H0 mass; however we find a better fit with ATLAS measurement in the γγ channel – 126.5 GeV/c2).   

The numbers in Table 3 fit with SM and a single potential minimum acting in the same manner on the W±, Z0 
and H0, because there is a single main resonance given by NP = 144; but the mass is shifted for each particle. 
The shift is not so small if compared to the pure harmonic: (1/144)/KD gives H0 → 6.5, Z0 → 17.64, W± → 61.74. 
The overall range is comparable to quarks. 
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Table 3. Massive bosons resonances (*) MeV/c2 

Particle P N K NP Computed (*) Measured (*) 

W± 12 12 –2 144 80,384.2 80,385 ±15 

Z0 12 12 –7 144 91,187.67 91,187.6 ±2.1 

H0 12 12 –19 144 126,355 125,500 ±400 ±400 

Parameters: Db = 5.6234 10–5; particle exclusion volume: V = R3 / (1.001278 π) – notice the divisor ≈ π. 

 

The distance Db was found by iterations starting with De μ/α me (guessing an inversion between bosons and 
fermions) and then making first order adjustments in α. Hence the coincidences: 

Db = De μ (1 +7α/3) / α me = 1.05612 α2           (7) 

The division of the exclusion volume by 1.001278 π was found empirically; it just works and we believe that no 
other simple solution does. It could come from a different density (X) and then from a different field, but we will 
show that it is related to geometry. We also have 1.001278 = 1 + 24 α2 ≈ 1 + (3/2) αS α; and then: 

V = R3/π (1 + 24 α2) ≈ R3/π (1 + (3/2) αS α)       (8) 

But the most stunning coincidence is that we find K in {–2, –7, –19} in Table 3, the same prime numbers as for 
quarks in Table 2, but column N. We also have 19 – 7 = 12 = N and P in Table 3. Obviously, it means an 
inversion of geometry which is then our interpretation of the π in (8). Moreover, as discussed in the previous 
section, a ratio 2 in quarks resonance changes the electric charge while 7 does not. But K = 2 is associated to the 
W± in Table 3, and then to quarks decay, while K = 7 is associated to the neutral Z0; the coherence is stunning. 

3. Analysis of Resonance and Coincidences 

3.1 Harmonics and Resonance Structure 

Equation (1) is well verified for all particles but we do not understand the resonances’ geometry. Moreover the 
mass depends on the reverse of a volume 1/R3 but the standard model spinors wave equations are based on the 
Compton wavelength h/m c. The Compton wavelength is proportional to R3 but it is not easy to find a link 
between both quantities (except of course using the initial reasoning leading to (1); see Consiglio, 2012a); all we 
know is a proportionality relation h/m c = k R3. It seems natural to analyze the resonance structure comparing the 
numbers in Tables 1, 2, 3, and the different parameters D. It is essentially guesswork… but fortunately there is an 
unavoidable empirical π in (8) that implies a difference in geometry between bosons and fermions. 

Electrons obey the Dirac equation while bosons obey the Klein-Gordon equation; those equations do not have 
exactly the same physical significance, but sufficiently close for our purpose. Using λ = i h/mc they are: 

λ γμ ∂μ Ψ – Ψ = 0            (9) 

λ2 Ψ – Ψ = 0               (10) 

We have assumed a unique fundamental resonance (N = P = 1) and a unique field density X for all particles. 
From (1) λ is proportional to a 3-volume, and it is used on equal grounds in the Dirac and Klein-Gordon 
equations. Since any function Ψ verifying (9) will also verify (10) and since (9) addresses spin ½ particles, then 
the resonances match a phase difference 4π n in (9) and 2π n in (10). But the volume is divided by π for massive 
bosons; then it corresponds to a 4-volume divided by its radius in (9) and by its circumference in (10).  

Whatever the space in which (1) works, the resonances are radial in Table 1, and circular in Table 3. Then in 
Table 2 it is a mix – P is radial and N is circular since 2, 7 and 19 are inverted between Tables 2 (N) and 3 (K).  

Consider for electrons a fully radial double resonance. N and P are on the same axis as KDe, which is then solely 
related to a repulsive force; there is nothing more to uncover in this resonance scheme alone.  

For quarks, mixed resonance requires a phase lock between a circular (N) and radial (P) resonance; it implies a 
trivial relation between π, 7, 19 and the constant P = 3 in Table 2. We get:  

7 × 3π ≈ 66 / 1.0004025             (11) 

19 × 3π ≈ 179 × 1.0003954          (12) 

The discrepancies (4·10-4) are small (and it can easily be checked that no other small prime number is so close to 
a solution of 3π X = Y, with X and Y integral numbers).  
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Moreover:  

1.0003954 / 1.0004025 ≈ 0.9999929           (13) 

They are the same at 7·10-6, but of opposite signs. Finally, the numbers 7 × 3π and 19 × 3π are very close to 
circular harmonics of a radial resonance. The mixed resonance scheme holds but should be frequently broken, 
resulting in a conundrum of absorption/emission if compared to the perfect resonance of electrons – something 
we should probably expect from quarks as they exchange color charge while electrons exchange no charge. Now 
(11 – 12 – 13) are trivial, but remember that the numbers 3, 7, and 19 were found empirically at the right places; 
the triviality is then a true confirmation that the empirical harmonics in Table 2 have geometric significance. 

For massive bosons we should have a double circular or spherical resonance in NP, a situation similar to 
electrons except for KDb which must be part of the circular resonance path and is also necessarily radial – but 
with no radial resonance. Taking only the circular path into account (but keeping the constraint coming from the 
radius), Db should be a divisor of π/144, a division that must hold with any K in Table 3. Since all those are 
primes numbers we can also use their product. Then in this simplified picture (that cannot hold) we should have:  

(π/144) / Db = 2 × 7 × 19 → π/144 = 266 Db 

Now Db is also radial and a volume depends on the cube of its radius. Then we must use Db π
1/3 on the right hand 

side; it gives a modified equation that is close to hold: 

π/144 = 266 Db π
1/3 

But also, π is multiplied by 1.001278 in (8); hence we must use the cube of this number on the left hand side, and 
reduce π accordingly in Db π

1/3; in this way we get comparable quantities, and we should have: 

(1.001278)3 π / 144 = 266 Db (π/1.001278)1/3 

Actually, we find: 

(1.001278)3 π / 144 = 1.0000136 × 266 Db (π/1.001278)1/3       (14) 

The discrepancy is 1.4·10-5. It shows that the resonance structure is coherent with empirical numbers, which 
definitely relate to some geometry and to the physics of mass, including 1.001278 π.  

Note also that updating Db → 1.0000136 Db to re-compute Table 3 has almost no effect on computed masses.  

3.2 A Single Field 

We have shown that our results are consistent and significant: All known masses are well approximated, and 
numbers and geometry are coherent. The ratios in coincidences are all based on simple equations in α or αS α, 
and the prime numbers 2, 3, 7, and 19 are coherent with geometry, as well as 1.001278 π. It naturally suggests 
that a single phenomenon is at work giving all particles mass.  

Nothing new one might say; of course, but the resonance structure depends on the symmetry or particles group 
and all Ds are defined from two coupling constants.  

Therefore the SM Higgs field is sensitive to the type of charges carried by the particle.  

- Firstly it is sensitive to all types of charges but in different manners – and then using some coincidences 
related to the Ds, we may understand how;  

- Second, and of equal importance, the three forms of resonance can only be related to two types of 
charges and no more – because two forms are “pure” and one is mixed.  

Let us use X to denote the mass-giving field, C for the quarks attractive force, and E for electricity which is 
repulsive; putting charges and coincidences (5 – 6 – 7) together with the resonances structure we get the 
following system: 

U(1): X × E → Radial + radial → De = αS α ≈ 16 α
2        (15.1) 

SU(3): X × (E + C) → Radial + circular → Dq = αS
 α (1 + α)       (15.2) 

 Massive Bosons: X × X → Circular + circular → Db = 1.05612 α2      (15.3) 

where all equations are coherent and have similar physical significances. 

This system alone proves the existence of a single field below SM forces and fields, because E is electricity, C is 
necessarily color charge, and X is sensitive to both – there is a unique interaction.  
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3.3 A Physical Interpretation  

The system (15) can be understood in a coherent manner if we assume a fundamental difference between X on 
the one hand, and E, C on the other hand: The former is a current while the latter are static charges – and what 
we call a current is not simply a moving charge (like J = e v). Our interpretation is a single field breaking down 
and running as a function of mass and distance. In terms of running, (15) logically gives: 

De/α = αS               (16.1) 

Dq/α = αS
 (1 + α) → αS

 (1 + 1.0276 α)        (16.2) 

Db/α = α → 1.0276 α           (16.3) 

where the arrows represent the running, ranging in energy from the electron to the top quark and Higgs boson; in 
this picture only α runs. Note that (1 + α) in (16.2) cannot be removed; since K < 0 in Table 2 it relates to a 
distinct charge. The system can be solved for low masses if the Ds depend on potentials and two types of charges: 
D is a priori a quantized distance, the trick is coherent with a potential.  

For lower masses the respective charges and the force coefficients are:  

X = α e; C = α e; EE = XX: 1; XE = XC: αS          (17) 

where the notations are trivial. The charges X and C actually depend on the symmetry; with U(1), X = α e/2.  

The rationale for (15 – 16) → (17) is the following: 

- C is color charge and X and C have the same type of charge (since 15.2 and 15.3 give the same 
coefficient α2); but X is a current while C is a static charge.  

- Using the whole system (16), the force coefficients at short distance and low mass are: 
o αS between charges and currents,  
o 1 between charges, 1 between currents.  

- Since α is the long range coupling of electrons with virtual photons in QED, the coupling is equivalent 
to a current of charges α e or two charges α e/2 – that we recognize in (16.2 – 16.3). Then we identify 
QED virtual photons to X or X-pairs currents, and we get:  

o All force coefficients at long range are 1 (including αS),   
o A running of charge-currents interaction from long to short distance (αS: 1 → 0.11692).  

- Equilibrium is reached from XC = XX running positively at very short distance (16.2 – 16.3). 
- The running (αS: 1 → 0.11692) can also be seen as a density of charge separation (or field polarization), 

a breakdown of X-currents to more elementary currents under the influence of an electric charge. 
- Massive bosons correspond to a resonance of the X-field alone giving (16.3), since NP is constant.   

The slope of the running has the shape of the Higgs potential; it is equivalent to a depletion volume of X or 
X-pairs in agreement with (1), and it fits with the pressure field hypothesis leading to this equation.  

Note that the geometry is coherent with a Higgs field appearing shortly after the big bang – when the density 
gets low enough and distances large enough for X-currents or X-pairs to form.  

This is the minimal interpretation, it gives a single field, and it holds. Once understood the difference between 
static charges and currents, which are mandatory in an absorber theory, it comes naturally.  

On qualitative grounds, we have Dq > De > Db, and even –Kq Dq > Ke De > –Kb Db (where Kx is any value of K in 
the related table); hence the weaker the inner forces shaping the resonance structure, the higher the average NP 
in a particle group, and the lesser the KD – in agreement with the forces coefficients in (17).  

From (16.2), we may have to update the large masses in Table 2 with Dq = αS
 α (1 + 1.0276 α); the calculus gives 

the top mass mt = 172.57 GeV/c2. Compare to 172.38 GeV/c2 in Table 2, it has no effect on the reasoning.  

4. Coherence With Magnetic Currents 

With respect to the SM Higgs field, X must interact like a scalar field; it is charged but Lorentz invariant. It is 
then made of pseudo-scalar charges which, by Lorentz transformation, appear as an invariant current quantum Jx. 
For an electric charge, we have in standard notations: 

Je = ρe γ v          (18) 

And then we should have similarly: 

Jx = ρx γ v          (19) 

Trivially, since Jx is constant we get ρx infinite for a particle at rest – then (19) is unphysical as it is.  
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Thus nothing is at rest and there is a minimal velocity giving a maximal value to ρx. This velocity must be an 
invariant natural constant, it is then the speed of light; X is tachyonic or light-speed. Then using V = c2/v and 
defining γS V = γ c, we can write: 

Jx = ρx γS V = const.; Jx = ρx γ c           (20) 

The γ is attributed to the absorber/receiver time dilation, and then (20) can hold in two different manners which 
are not incompatible:  

- As a charged tachyon, and we get g V = const.  
- As a light-speed constant charge; ξ = const – which is doubtful in Minkowski space unless ξ c = g V.  

The tachyon charge transformation in (20) was previously deduced in a different manner using the Bohr model 
and under the assumption that the electron mass is a magnetic current (Consiglio, 2013b); it gives a quantization 
condition opposite to Dirac’s (1931), and agrees with the two interpretations above:  

g = Z α e/2 n; g V = e c/2           (21) 

with n an integral number, and Z e the nucleus charge in the Bohr model. Hence the charges in (17) are coherent 
with Z=2, n=1 or Z=1, n=1 for g = α e/2; the latter is of special interest as (21) gives V = c/α, and then: 

e g V2/c2 = h c/2               (22) 

whose interest is obvious. But from (21), Equation (22) should be read: (e/2) (e V/c) = h c/2 – as a tachyon 
current (e/2) seeing an electron (e) with velocity V. 

Last but not least, we recall that using the Lochak (1995 – 2007) monopoles theory, the predicted geometry can 
trivially be used to construct an U(3) or SU(3) basis (see Consiglio, 2012a), as it gives four types of monopoles 
combining charge sign +/– and chirality L/R. It closes the loop with color charge as most elementary currents. 

One could ask how we can get tachyons without mass, but it naturally reduces to mass without mass. Symmetry 
shows in our case that tachyons momentum is bradyons energy and conversely (Consiglio, 2013b); an elegant 
answer to the question: There is no mass, only currents, angular momentum, and action. 

5. On Fractional and Integral Charges 

Let us use, as a test, a 5D manifold of signature (+,–,–,–,–) for (t, w, x, y, z), and then use g V = e c/2 to get 
fractional charges from v = dw/dt. Using V = c2/v in (21) we have: 

e/3 = e v/2 c ; 2 e/3 = e v’/2 c → v = 2 c/3 ; v’ = 4 c/3        (23) 

It gives a velocity c/3 in w, and tachyon velocities: V = 3 c/2 > c and V’ = 3 c/4 < c – but one is a bradyon, and 
then symmetry is broken in the direction w. Moreover, from (23) we can also use a simple addition of velocities. 
Assuming an unknown charge ξ and a velocity v in the direction w, one gets: 

e/3 = ξ (c + v)/c ; 2 e/3 = ξ (c – v)/c → ξ = e/2 ; v = c/3         (24) 

Equations like (23) and (24) do not hold together for other fractions, except for 1/2 and v = c.  

We also get an integral charge mixing two currents of opposite charges and directions. On this basis, and 
assuming a few simple rules, it is quite easy to build all SM particles and symmetries out of combinations of 
currents. In this picture, the currents e/3 and 2e/3 define particles inner circulation of Equation (1), while charged 
tachyons and light-speed neutral currents correspond to the absorption/emission process of distinct symmetries 
(and interestingly, it gives no gravitons). Eventually, we get U(3) broken in the w direction (or a combination of 
two U(3), one broken or of three U(1), one broken). 

This direction corresponds to a 4th space dimension, but it might not be needed; since one of the fractional 
charges is a tachyon and the other a bradyon, then the symmetry of space-time is broken (“before any 
interaction”) and it might be simply w = t, this dimension appearing simultaneously as space and time (recall 
also that a tachyon sees 3D space as 3 dimensions of time and 1D time as a dimension of space). The picture is 
far from complete, but so logical, minimal, and elegant that it needs to be mentioned. 

6. Conclusions 

The logic in this paper is coherent with the observed mass spectrum and consistent in resonance numbers and 
geometry. No better confirmation of the validity of Equation (1) can exist. We showed that the mass spectrum of 
elementary particles is natural and that a single field is necessary and sufficient to explain it. The field 
interpretation agrees, directly from (1) and the mass spectrum, with the electromagnetic and strong forces 
coupling constants, and with the shape of the Higgs potential. It is below SM forces and fields.  
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An excel spreadsheet is provided as supplementary material with computations related to the resonance tables 
and coincidences. 

Addendum 1 

Without any change to our conclusions, we can write (15.3) in a different way, and with very good precision: 

Massive Bosons: ? × ? → Circular + circular → Db = α2(1 + αS/2 – αS
2/6)    (15.3a) 

Then (16) becomes simpler since α is not running. But the interpretation requires X-charges and C-charges at 
work in (15.3a) to get the first two coefficients. (α2 → X × X or C × C, and α2 αS/2 → X × C). 

Addendum 2 – Comparing Resonance Quarks Masses With Lattice QCD Results 

Let us compare the quarks masses computed in Table 2 with known estimate from lattice QCD given by Davies 
& al (2010) – the exercise is of particular interest since one can hardly find more opposite or complimentary 
approaches. Lattice QCD simulation gives:  

- mu = 2.01 ± 0.14 MeV/c2,  
- md = 4.79 ± 0.16 MeV/c2,  
- u d average ml = 3.40 ± 0.07 MeV/c2.  
- mc/ms = 11.85 ± 0.16. 

We find in Table 2 differences of –3.9%, +4.4% for individual masses (u, d, respectively), and a nice agreement 
in average with ml = 3.47 MeV/c2. Interestingly, the differences are opposite and almost complimentary, in a 
manner similar to the resonance breaches discussed in section 3.1.  

The mc/ms ratio is also in great agreement as we get mc/ms = 11.797 from Table 2. 

Addendum 3 – A Better Link With QED Concepts 

Equation (1) was initially deduced from the assumption of a pressure field of “elementary momentum carriers”, 
so called Universons. We then departed from the “momentum only” assumption, and used some charges, 
essentially because “momentum only” is quite limited in terms of interaction and symmetry. In Universons 
theory, the “particle picture” is the following: 

- A flux Φ exists of invariant elementary momentum carriers of energy EU. 
- Particles have a (particle-type dependent) cross-section S with the flux. 
- A momentum carrier is absorbed/retained and reemitted after a particle-independent time τ. 

The energy of a particle is E = F(Φ, S), since EU and τ are constants. In this view an electron’s electric charge 
has no intrinsic energy, all its energy is made of absorbed Universons; the concept is physically irrelevant 
because it assumes that something exists with no energy – an acceptable modification of this equation is: 

E = F(Φ, S) + μ c2 

Where μ is the same as in Equation (1), this is what we call the electron proper energy or “naked mass” – but it is 
not QED self-interaction which is F(Φ, S). Thus: 

- We first say that QED models this function F with virtual photon loops, then F = E = self-interaction 
and in this interpretation there is no need for the mass μ.  

- Second, we say that this function F is the absorber and that obviously, the absorption/emission as well 
as the retention processes addresses the quantum of action h and of angular momentum h/2. Equation 
(1), in its origin, also addresses particle-wave duality. 

Therefore, a quantized absorber is relevant; if a quantum of absorption exists, since the electric charge does not 
depend on the electron’s energy (or muon, or tau), there is necessarily an energy associated to this charge. Then 
the absorption is F(Φ, S) = (m – μ) c2 = absorption/emission, and μ is a “naked mass”. In this way, our 
comparison with Bethe’s results is relevant.  

On this basis let us look at the magnetic current interaction; using the minimal Dirac charge gD = e/2 α, we have: 

E = h ν = 2π e (2 gD) ν/c            (A1) 

which, in this form, addresses a quantized magnetic current 2 gD ν. It relates to a current, not to a pair of charges. 
Assume that an electron proper energy (μ) depends on the square of its charge: e2 gives the mass μ, and then we 
can define a constant L that verifies: 

L e2 = μ c2              (A2) 
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From (A1), the function F is given by the electron charge interaction with a (hypothetical) pair of Dirac charges, 
which corresponds to retention. Using the conservation of energy, it should be equal to the proper energy of two 
hypothetical Dirac charges; we can then define two other constants L’ and L” verifying: 

(L” e 2gD =) 2 L’ gD
2 = (me – μ) c2            (A3) 

Then from (A2 – A3), and replacing gD, we get: 

μ/L = 2 α2 (me – μ)/L’           (A4) 

With a unique field, the ratio L/L’ must be related solely to geometry and then it cannot be arbitrarily large or 
small; thus Equation (A4) is in formal agreement with the coincidence (3), from which we get: 

L/L’ = 2π/√2          (A5) 

Hence the coincidence (3) can be related to a unique field, to geometry, and to the Dirac condition. 
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