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Abstract 
In this work we run numerical simulation of gasdynamic to study Riemann problem for the case of collision 
between two supersonic flows. We analyzed the profiles of density, velocity, pressure, furthermore we inspect for 
the late time the Mach number which is represent the shock strengths, the specific internal energy density, the 
total energy density, and the entropy related quantity. 

Our results reveal that the collision between two supersonic flows leads to the formation of two shocks separated 
by a contact discontinuity, as well as the numerical results for Euler equations and the exact solution are close to 
each other. 
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1. Introduction  
Riemann problems for the equations of hydrodynamics are defined by the initial conditions (Lowe, 2005) 																								 , , , 	 , , 				 	 0, , 			 	 0																																																																							(1) 

Values of density, velocity, and pressure ( , , ) are the pre-shock conditions (unshocked gas); the shocked 
gas ( , ,  are the post-shock conditions, the conditions after the shock. 

The general solution depends on the Riemann problem at a hand.  

The simplest Riemann problem for Euler equations are that in which	 ,	 	 , and  and with 0. 

In this work we will discuss the case in which two supersonic flows collide. We also assumed that the 
converging gas that has not yet gone through the shock front is undisturbed. 

The problem we have to solve is to find the shock velocity, density, and pressure in the compressed region: 	, ,  (Clarke & Carswell, 2007; Artzi & Falcovitz, 2003).  

The Mach number  of the shock is: 																																									 , 																																																																														(2) 																																							 . 																																																																												(3) 

,  is the speed of sound for the post-shock gas, and . 

The more common way to define the shock relations is in term of shock’s Mach number . 

The Rankine-Hugoniont conditions can be written as: 																																				 																																																														(4) 
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with arbitrary velocities tangent to the initial discontinuity. 

3) The Mach number, specific internal energy density is not constant across the contact discontinuity surface. 

4) The line dividing between two regions is a contact discontinuity, will be separated two flows of different 
entropy but the same pressure and velocity. 
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