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Abstract 

The astronomical data obtained from the observations of an enigmatic object hidden in the centre of our Galaxy 
suggest possible optical phenomena due to the light bending. The existence of the gigantic collapsar 
(super-massive black hole) located in the centre of the Galaxy and the presence of a very dense cluster of stars all 
around it, allows us to propose a new approach due to the extraordinary stellar “crowd” and consequent multiple 
light ray deflections. Consequently, a refulgent optical aureole, which should be detectable by infrared 
observation, may be predicted. 

Keywords: Galaxy, Galactic centre, collapsar, gravitational lensing, light bending 

1. Introduction 

A collapsar—“black hole” in terms of the general relativity theory (GRT)—is a massive body in which gravity 
prevails above all other physical forces. In 1974 the British astronomer Sir Martin Rees proposed that 
super-massive collapsars—ones with a million or even more solar masses—must exist within the centres of some 
galaxies with active nuclei that shine as brightly as tens of billions suns. Rees was speculating about black holes 
in active galaxies, but furthermore due to systematic observations a dawning awareness appeared that active 
galaxies are not the only ones to harbour such monsters at their centres. Ordinary galaxies like the Milky Way 
proved to have them also (Melia Fulvio, 2007).  

In 1974 American radio astronomers B. Balick and R. Broun discovered a compact and variable radio source that 
looked much like a faint quasar but this object was only 26,000 light-years away. Because it appeared to be 
inside a large, extended radio source already known as Sagittarius A, they named it Sagittarius A* (“A-star”). 
Over the next two decades, astronomers painstakingly examined Sagittarius A* (Sgr A*) at radio, optical, and 
near-infrared (NIR) wavelengths, but for examination at X-ray wavelengths it would have been necessary to 
launch a specific X-ray telescope in orbit around the earth. In 2000 the cosmic observatory “Chandra” pinpointed 
a source of X-rays that coincided with Sgr A*. Due to the variable brightness of the Sgr A*, astronomers 
calculated that the X-ray source was only about 15 million kilometres across (c.f. the orbit of the Earth is 
approximately 300 million km in diameter). 

The central region of our Milky Way is an extremely interesting and fascinating field of research. There, within 
few light years astronomers find tens of thousands of stars forming a dense cluster, and geometric centre of our 
Galaxy harbours a super-massive collapsar (termed here as a Collapsar) with around 4.1 million solar masses. A 
significant contribution in these studies has been made by astronomers of the Max-Planck Institute. Since the 
first NIR high-resolution observations of the Galactic centre (GC) in the beginning of the 1990s, the GC has 
been regularly monitored. Time resolved astrometry over a time span of the last 17 years allows a description of 
the proper motions of the GC stars. The observations clearly show that some stars in the immediate vicinity of 
Sgr A*—i.e. in distances up to around 30 light-days—move on Keplerian orbits around the central mass 
(Gillessen et al., 2009). From the shape of these orbits, the mass of Sgr A* and its distance from the Earth can be 
calculated. In order to achieve this, the astronomers of the Max-Planck Institute have observed the central parsec 
of the Galactic centre in near infrared wavelength at the European Southern Observatory—ESO (Chile). 

Until 2003 no unambiguous NIR counterpart of Sgr A* could be detected. On the 9th of May 2003, during 
routine observations of the star cluster at 1.7 microns with infrared camera NAOS/CONICA they witnessed a 
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powerful flare at the location of the black hole. Within a few minutes the flux of a faint source increased of 5-6 
and disappeared again after about 30 minutes. The flare was found to have happened within a few 
milli-arcseconds of the position of Sgr A*. The short rise-and-decay times told astronomers that the source of the 
flare was located within less than 10 Schwarzschild radii of the black hole (Paumard & Perrin, 2005; Hamaus et 
al., 2009).  

It should be noted that the wide-spread term “black hole” is not a happy choice. The Relativistic Theory of 
Gravity, promoted by the team of physicists in Russia (Logunov, 2001), justly asserts that a result of the collapse 
of a spherical mass must have a finite density irrespective of the frame of reference. But according to GRT a 
collapsing mass reaches infinite density during a finite period of proper time. Moreover, this final “singularity” 
hasn’t any tangible outer boundary, and so an observer falling to it does not feel any obstacle when crossing the 
Schwarzschild sphere. Such fanciful properties are irreconcilable with the notion of a physical object. It was not 
without reason that Einstein himself wrote: “Schwarzschild”s singularity does not exist, since matter cannot be 
concentrated in an arbitrary manner; otherwise clustering particles would achieve the velocity of light” 
(Einstein, 1966, p. 531). In GRT, however, difficulties arose with the conservation laws of energy-momentum 
and angular momentum. D. Hilbert wrote in this connection: “I claim that within general relativity theory, i.e. in 
the case of general invariance of the Hamiltonian function, there definitely exist no energy equation ... 
corresponding to the energy equations in orthogonal-invariant theories. I could even point to this circumstance 
as a characteristic feature of general relativity theory.” All above is explained by the absence in Riemannian 
space of the ten-parameter group of motion space-time, so it is essentially impossible to introduce 
energy-momentum and angular momentum conservation laws, similar to those that hold valid in any other 
physical theory (Logunov, 2001, pp. 18-19). 

Despite that “publicly transparent” statement, the erstwhile warning of the great mathematician is neglected. So, 
it is likely, that the “black hole” appeared as an artefact of GRT. In contrast, the novel Relativistic Theory of 
Gravity ascertains that “a body of arbitrary mass cannot undergo compression indefinitely, and therefore no 
gravitational collapse involving the formation of a ‘black hole’ is possible” (Logunov, 2001, p. 149).  

Luckily for us, the phenomenon of light bending in gravitational field has the same explanation in both theories 
(Logunov, 2001, pp. 164-166); that is how things are in this part of physics. The existence of the Collapsar 
located in the centre of the Galaxy and the presence of a very dense cluster of stars all around it, allows two 
different (even reciprocally opposite) approaches being implemented in theoretical investigation. In (Alexander 
& Loeb, 2001) the authors adopt the cluster to be a new massive supplement to ability of the central Collapsar 
when lensing “distant background stars”. They reasoned that “the lensing probability is increased by factor 
ranging from 2 to 3”. Contrary to them, the present paper studies the role of these close stars in the central 
cluster as source rather than lense. This approach is based on the extraordinary stellar “crowd” and consequent 
multiple light ray deflections in the vicinity of the Collapsar. It consists in depicting the geometry of a 
three-dimensional region critical for the light bending. Thus, a refulgent optical aureole should be detectable by 
observation in the near infrared range if the density of stars is sufficiently high in that critical volume. The main 
idea behind this approach was presented at the conference on applied mathematics in February 2011, 
Novosibirsk (Leus & Taylor, 2011). 

2. Gravitational Lensing The effect of a light beam bending near a massive body may be interpreted as a consequence of space-refraction 
taking place in the vicinity of a mass, where the value of refractive index depends on the gravitational potential. 
Einstein was the first scientist to discuss the natural phenomenon of gravitational lensing. In 1936 he examined 
the possibility that the gravity-lensing effect might be detected if one star intercepts the line of sight to a more 
distant star. He understood that such a geometrical occurrence is extremely unlikely. Moreover, even if the case 
arises the effect may be undetectable due to the very small angular diameter of the image—the bright halo 
(Einstein ring) encircling the lensing star. Even nowadays the angular diameter of images caused by a stellar 
mass—so called microlensing—is too small to be resolvable by telescopes. 

An observer ܱ, a star ܣ and a star ܤ are arranged in the same straight line. The distance between the observer 
and star ܣ is ∣ ܣܱ ∣, the distance between the star ܣ and star ܤ is ∣ ܤܣ ∣ (Figure 1). One light beam goes 
from the utmost down rim of the star ܤ and another light beam goes from the utmost up rim to the star ܣ and 
after being deflected there goes farther to the observer. An angle of bending ߙ ൌ ݇/ܾ ≪ 1, where ݇—a constant 
length depending on mass of the star ܣ, the so called impact parameter ܾ is the distance from the ray trace to 
the centre of the star ܣ.  
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Schwarzshield sphere. (Sometimes ܴ௚ is also referred to as the Schwarzshield radius.) For the Sun and for the 
majority of all normal stars the Schwarzshield sphere is buried under thick layers of the active body but another 
phenomenon takes place for a collapsar, whose Schwarzshield sphere is open to the outer cosmic space.  

The given above formula works for the big enough values of impact parameter only. For ܾ ൏ 10 (gravitational 
radius taken to be unity) the error increases dramatically, and a more complicated formulae derived from the 
equations of motion must be used. The escape velocity enables an arbitrary body to go to infinity from the 
attractive centre. In a spherically symmetric gravitational field the escape velocity is ݒ௘௦௖ ൌ ඥ2ݎ/ܯܩ  at a 
distance ݎ from the centre, both in Newtonian and Einsteinian theories. At the distance ݎ equal to the 
Schwarzshield radius, i.e. on the Schwarzshield sphere of a collapsar, the escape velocity is equal to the light 
speed.  

The trajectory of an ultra-relativistic particle (photons included) in the collapsar’s neighbourhood remain also 
planar in GRT, but unlike the Newtonian case not every ݎ can provide a stable circular orbit. Choosing the 
plane of the trajectory to be equatorial in a system of spherical coordinates ሺݎ, ߮,  ሻ the equations of motionߴ
(Frolov & Novikov, 1998, p. 44) may be written in the following form: ൬ ൰ଶݐ݀ܿݎ݀ ൌ ൬1 െ ൰ଶݎ1 ቈ1 െ ܾଶݎଶ ൬1 െ ൰቉ݎ1 , ݐ݀ܿ߮݀ ൌ ൬1 െ ൰ݎ1  . ଶݎܾ
Here the impact parameter ܾ and the distance ݎ are measured in the gravitational radius units. For example, ܾ ൌ 4, ݎ ൌ 3 means  ܾ ൌ 4ܴ௚, ݎ ൌ 3ܴ௚ respectively.  

The first equation describes the rate of change for the distance from particle to the attractive centre:  

ݐ݀ܿݎ݀ ൌ േ ൬1 െ ൰ݎ1 ඨ1 െ ܾଶݎଶ ൬1 െ  . ൰ݎ1
The double sign means only two possible directions for the same trajectory. Let us find a condition for the rate to 
be zero. The equation 

൬1 െ ൰ݎ1 ඨ1 െ ܾଶݎଶ ൬1 െ ൰ݎ1 ൌ 0 

may be satisfied in two different manners. The first one ሺ1 െ ሻݎ/1 ൌ 0 is trivial. More interesting is the second 
variant  1 െ ܾଶݎଶ ൬1 െ ൰ݎ1 ൌ 0, 
or ݎଷ െ ܾଶሺݎ െ 1ሻ ൌ 0, from which ܾሺݎሻ ൌ ඥݎଷ/ሺݎ െ 1ሻ                                    ሺ2ሻ 

represents an impact parameter as a function of minimal distance ݎ ൌ  .௠௜௡ to the centre for any orbitݎ

The derivative of this function is ܾ݀݀ݎ ൌ ݎሺ2ݎ െ 3ሻ2ඥݎሺݎ െ 1ሻଷ . 
It is negative at ൏ ଷଶ , positive at ݎ ൐ ଷଶ , and zero at ݎ ൌ ଷଶ . The function ܾሺݎሻ has a minimum value ܾ ቀଷଶቁ ൌ ܾ଴ ൌ ଷ√ଷଶ ൌ 2.598 so that all trajectories with an impact parameter ܾ ൏ ܾ଴ do not have a minimal value 

of distance to the attractive centre at all. Such a trajectory enters the Schwarzshield sphere i.e. gravitational 
capture occurs regardless of what momentum and energy the particle has. If the impact parameter has a value ܾ଴, 

the corresponding trajectory is the closed circle of radius ݎ ൌ ଷଶ where the particle is trapped by the collapsar. If 

the impact parameter meets the condition ܾ଴ ൏ ܾ ൏ ܾଵ , the trajectory has many revolutions with an almost 
closed circle but ultimately escapes to infinity in any direction (Figure 2).  
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Hence, the expression for a differentially small layer is ݀ݒ ൌ  ଶ݈݀ and the light flux on the telescope from݈ߨ4
identical stars is: ݀खࡰ ൌ ଶ݈݈݀ߨ4݊ ൬ 4ࣦߨ ݈ܦ ൅ ൰ଶܮ ൌ ଶࣦܦଶߨ݊ ∙ ݈ଶ݈݀ሺ݈ ൅  . ሻଶܮ
The full flux is obtained by integration of ݀खࡰ over all values of variable ݈ between zero and ݎ: खࡰ ൌ ଶࣦܦଶߨ݊ න ݈ଶ݈݀ሺ݈ ൅ ሻଶ ௥ܮ

଴ . 
The element of integration may be described as follows: ݈ଶ݈݀ሺ݈ ൅ ሻଶܮ ൌ ݈݀ െ ሺ݈݈݀ܮ2 ൅ ሻܮ ൅ ଶ݈݀ሺ݈ܮ ൅  . ሻଶܮ
So the integral required is න ݈ଶ݈݀ሺ݈ ൅ ሻଶ௥ܮ

଴ ൌ න ݈݀௥
଴ െ ܮ2 න ݈݀ሺ݈ ൅ ሻ௥ܮ

଴ ൅ ଶܮ න ݈݀ሺ݈ ൅ ሻଶ௥ܮ
଴ ൌ ቈ݈ െ ܮ2 lnሺ݈ ൅ ሻܮ െ ଶሺ݈ܮ ൅ ሻ቉଴ܮ

௥  
       ൌ ݎ ൅ ܮ2 ln ݎܮ ൅ ܮ ൅ ݎݎܮ ൅ ܮ ൌ ݎ െ ܮ2 lnሺ1 ൅ ሻܮ/ݎ ൅ ሺ1ݎ ൅  .ሻିଵܮ/ݎ

We use a power series expansion: න ݈ଶ݈݀ሺ݈ ൅ ሻଶ௥ܮ
଴ ൌ ݎ െ ܮ2 ቆܮݎ െ ଶܮଶ2ݎ ൅ ଷܮଷ3ݎ െ ସܮସ4ݎ ൅ ⋯ ቇ ൅ ݎ ቆ1 െ ܮݎ ൅ ଶܮଶݎ െ ଷܮଷݎ ൅ ⋯ ቇ ≃ ଶܮଷ3ݎ െ ଷܮସ2ݎ ൌ ଶܮଷ3ݎ ൬1 െ ࡰcentred on the Collapsar may be written explicitly as follows: ख ݎ ൰. Now the total light flux impinging on the objective lens of the telescope from all stars within the sphere of radiusܮ2ݎ3 ≃ ଶܮଷ3ݎ ଶࣦܦଶߨ݊ ൬1 െ ൰ܮ2ݎ3 ൌ ݊ 43 ଷݎߨ ∙ ࣦ ଶܮଶ4ܦߨ ∙ ൬1 െ  .൰ܮ2ݎ3

Here the first multiplier is the total number of stars in the sphere under consideration; the second multiplier is the 
light flux impinging on the telescope from a star of luminosity ࣦ situated at the galaxy centre, and the third 
multiplier is a corrective factor taking into account the distribution of stars over the sphere of radius ݎ centred 
on the Collapsar.  

This estimate is too exaggerated because it ignores dispersion in a gravitational lens. Indeed, differentiation of 
the dependence (1) over ܾ gives an expression  ܾ݀݀ߙ ൌ െ 2ܴ௚ܾଶ  . 
A difference of impact parameters ∆ܾ ൌ ሺܾௗ െ ܾ௨ሻ is not zero (Figure 1), therefore the angle ߴ ൌ 2߮ of light 
beam from a star to the telescope D (Figure 3) is enlarged after passing nearby the Collapsar: ߴᇱ ≅ ߴ ൅ ܾ݀ߙ݀ ∆ܾ . 
And what is more, the nearer to Collapsar beam passes, the wider is its divergence. For stars from the front 
semi-sphere (relative to an observer) trajectories with the impact parameter between ܾ଴  and ܾଵ  are 
characteristic (Figure 2), so the essentially non-linear dispersion in any direction would be typical.  
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In Figure 5 a longitudinal cross section of the corresponding lensing region for variable values ݈ is shown. For a 
star ܵ the observer sees two images ଵܵ—inside the Einstein ring, and ܵଶ—outside. The primary image is 
always magnified with factor ܣଵ, and the secondary image is always de-magnified with factor ܣଶ. The total 
theoretical magnification therefore is: ܣ ൌ ሺܣଵ ൅ ݕ where , ݕ/ଶሻ ~1ܣ  is the angle between direction to 
Collapsar and direction to the star (Falcke & Hehl, 2003, pp. 263-264). The volume of this lensing region of a 

parabolic shape is v ൌ ׬ ௟௢ݔଶ݀݀ߨ ൌ  ௚݈ଶ. It would be fair to name it “Einstein paraboloid” because of itsܴߨ
groundbreaking role in creation the optical phenomenon.  

Consider a realistic example with the average spatial “density” of stars ݊ ൌ 300 per cubic light year, and ݈ ൌ 300 light years. Gravitational radius of the Collapsar with mass 4 ൈ 10଺ܯ⊙ is equal to 10ି଺ light years 
in accordance with (1). The number of stars in the limit of Einstein paraboloid is ܰ ൌ ݊v ൌ ߨ ∙ 300 ∙ 10ି଺ ∙ 300ଶ ≅ 100. The value ݈/ܮ ൎ 0.01, hence obscuration by dust within the local volume is negligible. Moreover, 
stars in the Galaxy centre are massive and very hot with luminosity ࣦௌ ≃ 10ଷࣦ⊙. So even disregarding 
magnification due to lensing the luminosity of this Galaxy’s aureole may clearly reach 10ହࣦ⊙ in every 
direction. Besides that in reality there are faint stars encircling the Galactic centre: “Using positional and radial 
data of star S2, we found that there could exist an unobserved extended mass component of several 10ହܯ⊙ , 
forming a so-called cusp” (Mouawad et al., 2005). These stars are too feeble in luminosity to be observed 
directly from the Earth, but being amplified by gravitational lensing their contribution may be appreciable. 
Naturally, to an observer on the Earth the light flux from the aureole is in the infrared. This is a significant trait 
of space near the GC collapsar which should be observable by astronomers because the separate stars are 
observable in the near-infrared range. 

5. Conclusions 

Eddington's famous phrase “...so simple a thing as a star” (from his book “Stars and Atoms”) is now obsolete. 
However for any “black hole” there are only three physical parameters. These are: mass, angular momentum and 
electric charge. Even among such simple objects the Collapsar located in the centre of our Galaxy is thought to 
be (so far) unique: it does not rotate and is electrically neutral. However there are several riddles hitherto 
unsolved by astronomers. For example, there are only young blue stars in the immediate vicinity (around 0.02 
parsec) whereas a mixture of young and old stars exists further away. Some astronomers admit that the nearest 
stars “pretend” only to be young and their up-to-date appearance is a consequence of an unusual stellar evolution. 
Rather puzzling is the weak radiation emanating out of the Collapsar: “...the centre of the Galaxy is quite benign 
compared with activity seen in active galactic nuclei” (Bradt, 2008, p. 41). It is this strange feebleness that gives 
ground to the belief that the Galactic nucleus contains a “baby” giant black hole (Falcke & Hehl, 2003, p. 307).  
The mathematical model presented here adds one more item to the GC mystery list: why has not any visible 
radiance, circling the point Sgr A*, been discovered? What is preventing the light to reach us? It is not the 
accretion disk, especially if it is rather in a primitive stage: “since the accretion disk in Sgr A* is so faint and the 
accretion rate so uncertain, we cannot actually derive an accretion disk luminosity or accretion power” (Falcke 
& Hehl, 2003, p. 338). Theoretically speaking, several models predict the synchrotron emission of gas falling 
into the black hole from immediate vicinity of order 15 ܴ௚. Would it or not be transparent for the visible light? 
If the latter, the halo will lose a significant part of its luminosity. At distances bigger than 15 ܴ௚ the bending 
angle α becomes less than 0.15Rad and so only these stars which fall out of the α-conical segment make a 
contribution to the halo brightness. In that way the most efficient volume of Einstein paraboloid becomes idle for 
the amplification process.  

Another cause might be not internal absorption but an external shielding. Far away (൐ 100 ܴ௚ ) where 
gravitational bending vanishes, clouds of dust are supposedly orbiting the Collapsar along all kinds of 
non-Keplerian trajectories. The question “of what origin?” naturally occurs. Trying to figure out what they might 
be made of, it is possible to suppose an existence of remnants of once collided stars. The density of stars has a 
cusp-like dependence on the distance to Collapsar and such a catastrophic event indeed may occur. After such a 
catastrophe debris are spreading along the orbit in the form of a diffuse wisp. The light from an outer source has 
to cross twice this natural “smoke-screen” of previously collided stars. This point is a subject for further 
discussion. In any case, an authentic “cosmic mirage”—the invisibility of the gravitational optical aureole in the 
Galactic centre—represents a serious observational challenge for modern astronomy. It is likely that astronomers 
working with specific telescopes (functioning in infrared range) will in due course be able to provide answers from 
direct observations to the questions raised in this paper.  
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