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Abstract 
In this paper the equation of forced VAN der Pol generalized oscillator is examined with renormalization group 
method. A brief recall of the renormalization group technique is done. We have applied this method to the 
equation of forced Van der Pol generalized oscillator to search for its asymptotic solution and its renormalization 
group equation. The analysis of the numerical simulation graph is done; the method’s efficiency is pointed out. 

Keywords: forced VAN der Pol generalized oscillator, renormalization group method, renormalization group 
equation 

1. Introduction  
The analysis of the asymptotic behavior has played an important role in applied mathematics and theoretical 
physics. In many cases, the regular perturbation methods become inapplicable than the singular perturbation 
methods see (Bender & Orszag, 1978; Chen, Goldenfeld, & Oono, 1996; Chiba, 2008b; Hinch, 1991). We can 
cite the singular perturbation methods for solving ordinary differential equations (ODE), methods of multiple 
scales, WKB (Bender & Orszag, 1978), the method recovery (Roberts, 1985), etc. The renormalization group 
method which is the subject of this study was compiled by Chen, Goldenfeld, and Oono (1994, 1996) for 
differential equations of the following form   ݔሶ ൌ ݔܨ	 ൅ ߳݃ሺݔ, ,ݐ ߳ሻ; 	ݔ ∈ 	Թ௡                           (1) 

where ϵ ൒ 0 is a small parameter. They showed that the renormalization group method unifies the singular 
perturbation methods listed above (Chiba, 2008b). With this method, the renormalization constants of integration 
can raise divergence. This technique of renormalization does appear the renormalization group equation (RGE) 
of involving the amplitude which stabilizes the limit cycle; it is simple for dynamical system analysis. Chiba 
(2008b) used the renormalization group method to analyze the model of Kuramoto coupled oscillators. 

The Van der Pol equation is a basic model for oscillatory processes in physics, electronics, biology, neurology, 
sociology and economic (Marios, 2006). In this work we decided to investigate the forced Van der Pol oscillator 
in its generalized form governed by the dimensionless equation below. We have done the similar work, where the 
unforced Van der Pol generalized oscillator is studied. We will force the system with a periodic external force of 
pulsation ߗ. In this case ݃ሺݔ, ,ݐ ߳ሻ is an explicit function of time. This oscillator has been applied for modeling 
a Bipedal Robot by de Pina Filho and Dutra (2009) and known as Hybrid Van der Pol-Rayleigh oscillators. 
Sarkar and Bhattacharjee (2010) recently studied the unforced Van der Pol oscillator with another technique of 
the renormalization group theory to find its limit cycle. The paper is organized as follows. 

In the second section a brief recall of the renormalization group technique will be done. In the third section, the 
method will be applied to the equation of forced Van der Pol generalized oscillator leading to the occurrence of a 
Hopf’s classical bifurcation. In the fourth section our results will be analyzed through the graphs. The 
conclusions will be presented in the final section.  

2. Renormalization Group Method 
In this section we recall the outline of the technical group renormalization for (ODE). 

For more details we refer to (Chiba, 2008b). We consider an (ODE) of the form ݔሶ ൌ ݔܨ	 ൅ ߳݃ሺݔ, ,ݐ ߳ሻ, 
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ൌ ݔܨ ൅ ߳݃ଵ	ሺݔ, ሻݐ ൅ ߳ଶ݃ଶ	ሺݔ, ሻݐ ൅ ⋯ ; 	ݔ ∈ 	Թ௡		                   (2) 

where	0	 ൑ ϵ ≪ 1	. For this system, we assume that: 

1) The matrix F is a diagonalizable ݊ ∗ ݊ constant matrix all of whose eigenvalues lie on the imaginary 
axis. 

2) The function ݃ሺݔ, ,ݐ ߳ሻ is Cஶ class with respect to	ݐ, ,ݔϵ. The formal power series expansion of ݃ሺ	and	ݔ ,ݐ ߳ሻ in ϵ is given as above. 

3) Each ௜݃	ሺݔ, ݐ ሻ is periodic inݐ ∈ 	Թ  and polynomial in	ݔ. 

Firstly we apply the simple development method and secondly the renormalization group method will be applied 
to break down the divergence. We replace ݔ in Equation (2) by ݔሺݐሻ ൌ ሻݐ଴ሺݔ ൅ ሻݐଵሺݔ߳ ൅ ⋯                            (3) 

After development and identification of the coefficients of ϵ we find: ݔሶ଴ ൌ పሶݔ ଴,                                      (4)ݔܨ ൌ 	௜ݔ	ܨ ൅ ,ݐ௜ሺܩ	 ଴ݔ ൅ ଵݔ ൅⋯൅  (5)																																																								௜ିଵሻݔ

where the homogeneous term ܩ௜ is a regular function of t, 	x଴, 	x୧ିଵ with: ܩଵሺݐ, ଴ሻݔ ൌ ଵ݃	ሺݔ଴, ,ݐଶሺܩ                  (6)																																								ሻ,ݐ ,଴ݔ ଵሻݔ ൌ డ௚భ	డ௫ ሺݔ଴, 	ଵݔሻݐ ൅ ݃ଶ	ሺݔ଴,                (7)																									ሻ.ݐ

We can verify the Equality (8) below (Chiba, 2008a, lemma A.2 for the proof): డீ೔డ௫ೕ	 ൌ డ௚೔షభడ௫ೕషభ	 ൌ డ௚೔షೕడ௫బ	 	 ; ݅ ൐ ݆ ൐ 0.																									                   (8) 

In what follow we denote the fundamental matrix ݁ி௧	as	ܺሺݐሻ.	Define the function ܴ௜,	݄௧௜ , ݅ ൌ 1,2, …. on Թ௡ by 	ܴଵሺݕሻ ൌ ݈݅݉௧	→	ஶ ଵ௧ ׬ ሾܺሺݏሻିଵܩଵሺݏ, ܺሺݏሻݕሻሿ݀ݏ	,																																				௧௧బ      (9) ݄௧ଵሺݕሻ ൌ ܺሺݐሻ ׬ ሾܺሺݏሻିଵܩଵሺݏ, ܺሺݏሻݕሻ െ ܴଵሺݕሻሿ݀ݏ,																																			௧௧బ    (10) ܴ௜ሺݕሻ ൌ ݈݅݉௧	→	ஶ	 ଵ௧ ׬ ሾܺሺݏሻିଵܩଵ ቀݏ, ܺሺݏሻݕ, ݄௦ଵሺݕሻ,… , ݄௦௜ିଵሺݕሻቁ െ ܺሺݏሻିଵ ∑ ൫݄ܦ௧௞ሻ௬	ܴ௜ି௞ሺݕሻ൧݀ݏ, ݅ ൌ 2,3…				௜ିଵ௞ୀଵ 	௧௧బ   

(11) ݄௧௜ሺݕሻ ൌ ܺሺݐሻ ׬ ሾܺሺݏሻିଵܩଵ ቀݏ, ܺሺݏሻݕ, ݄௦ଵሺݕሻ, … , ݄௦௜ିଵሺݕሻቁ െ ܺሺݏሻିଵ ∑ ൫݄ܦ௧௞ሻ௬	ܴ௜ି௞ሺݕሻ െ ܴ௜ሺݕሻ൧݀ݏ,௜ିଵ௞ୀଵ 		௧௧బ  (12) 

Proposal: Let ݔ଴	ሺݐሻ ൌ ܺሺݐሻݕ be the solution to Equation (4) whose initial value is ݕ	 ∈ 	Թ௡. 

Then for an arbitrary time ߞ	 ∈ 	Թ,	 and	i ൌ 1, 2, 3…, the curve ݔ௜	 defined by  ݔ௜ ൌ ݄௧௜ሺݕሻ ൅ ଵ௜݌ ሺݐ, ݐሻሺݕ െ ሻߞ ൅ ଶ௜݌ ሺݐ, ݐሻሺݕ െ ሻଶߞ ൅ ⋯൅ ,ݐ௜௜ሺ݌ ݐሻሺݕ െ  ሺ13ሻ																		ሻ௜ߞ
gives a solution to Equation (5), where the functions ݌ଵ	௜ … , ௜	ଵ݌ :௜ are given by	௝݌ ሺݐ, ሻݕ ൌ ܺሺݐሻܴ௜ሺݕሻ ൅ ∑ ሺ݄ܦ௧௞ሻ௬	ܴ௜ି௞ሺݕሻ,																																						௜ିଵ௞ୀଵ 	     (14) 

௜	௝݌ ሺݐ, ሻݕ ൌ ଵ	௝ ∑ ப୮ౠషభౡப୷ ሺt, yሻR୧ି୩ሺyሻ	,ሺj ൌ 2, 3, … i െ 1	ሻ.																				୧ିଵ୩ୀଵ                      (15) 

Further, the functions	h୲୧  are bounded uniformly in t. The solution of the Equation (2) is given by ݔሺݐ, ,ߞ ሻݕ ൌ ܺሺݐሻݕ ൅ ߳൫݄௧ଵሺݕሻ ൅ ܺሺݐሻܴ௜ሺݕሻሺݐ െ ሻ൯ߞ ൅ ܱሺ߳ଶሻ.													            (16) 

It is the solution obtained by simple development; it diverges for time long, leading to the need for its 

renormalization. It should not depend on ߞ	 ቀడ௫ሺ௧,఍,௬ሺ఍ሻሻడ఍ |఍ୀ௧	 ൌ 0ቁ, then  ܺሺݐሻ ௗ௬ሺ௧ሻௗ௧ ൅ ߳ డ௛೟భడ௬ డ௬ሺ௧ሻడ௧ െ ߳ܺሺݐሻܴଵሺݕሻ ൌ 0.																														            (17) 

We verify that the Equation (17) admits solution: 

  
ௗ௬ሺ௧ሻௗ௧ ൌ ܴ߳ଵሺݕሻ ൅ ܱሺ߳ଶሻ.																																												             (18) 

Let y(t) be a solution of the Equation (18), then the solution of the Equation (2) looked for the renormalization 
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group method is given by: ݔሺݐ, ,ݐ ሻݕ ൌ ܺሺݐሻݕሺݐሻ ൅ ݄߳௧ଵሺݕሺݐሻሻ ൅ ܱሺ߳ଶሻ	.																										          (19) 

The Equation (18) is the equation of the renormalization group of Equation (2). The calculation for a higher 
order is in the same way and one obtains the equation of renormalization group of order m as follows: ௗ௬ௗ௧ ൌ ܴ߳ଵሺݕሻ ൅ ߳ଶܴଶሺݕሻ ൅⋯൅ ߳௠ܴ௠ሺݕሻ,               (20)																	ЄԹ௡.	ݕ

3. Application to the Forced Van Der Pol Generalized Oscillator 
We consider the forced Van der Pol generalized oscillator governing by dimensionless equation as follows 

ሷݔ  ൅ ݔ െ ߳ሺ1 െ ଶݔܽ െ ሶݔܾ ଶሻݔሶ ൌ           (21)																																	ሻ;ݐߗሺ݊݅ݏܧ

where	ܽ, ܾ,	߳, ܧ and Ω are positifs control parameters such as ϵ is small. ݊݅ݏܧሺݐߗሻ is external force for 
pulsation Ω and amplitude E. The internal pulsation is here equal to one. With ܧ ൌ ߳c, y ൌ ሶݔ , ݔ ൌ ሺݖ ൅ݖሻ	and	ݕ ൌ ݅ሺݖ െ ሻ , we rewrite the Equation (19) as ൝ݖ ሶݖ ൌ ݖ݅ ൅ ఢଶ ሾሺݖ െ ሻݖ െ ܽሺݖ ൅ ݖሻଶሺݖ െ ሻݖ ൅ ܾሺݖ െ ሻଷݖ െ ሶݖሻሿݐߗሺ݊݅ݏܿ݅ ൌ െ݅ݖ ൅ ఢଶ ሾെሺݖ െ ሻݖ ൅ ܽሺݖ ൅ ݖሻଶሺݖ െ ሻݖ െ ܾሺݖ െ 	ሻଷݖ ൅  (22)																										ሻሿ,ݐߗሺ݊݅ݏܿ݅

The two equations of the system are nearly identical, the problem amounts to solving one of them. With ݖሺݐሻ ൌ ଴ݖ ൅ 	ଵݖ߳ ൅ ⋯																																							              (23) 

we find 

ሶ	଴ݖ	    ൌ ଵሶݖ                 (24)																																																		,	଴ݖ݅ ൌ ଵݖ	݅ ൅ ,ݐଵሺܩ                (25)																																											଴ሻ,ݖ

From zero order we have: 

	଴ݖ  ൌ ௜௧݁ݍ ൌ                          (26)																					ሻ,ݐሺܼݍ

with q the integration constant of Equation (24). Expressions (9) and (10) give  ܴଵ ൌ 	 ଵଶ ሺ1ݍ	 െ ሺܽ ൅ 3ܾሻ|ݍ|ଶሻ െ ݅ܿ ݈݅݉௧	→	ஶ ଵ௧ ׬ ሾܼሺݏሻିଵsin	ሺݏߗሻሿ݀ݏ	,																										௧௧బ 	 (27) ݄௧ଵሺݕሻ ൌ ௜ସ	ቂሺܽ െ ܾሻ ቀݍଷ݁ଷ௜௧ ൅ ଵଶ	ݍଷ݁ିଷ௜௧ቁ ൅ ቀሺܽ ൅ 3ܾሻݍݍଶ െ ቁݍ ݁ି௜௧ቃ െ ௜௖௘೔೟ଶ ׬ ሾܼሺݏሻିଵ݊݅ݏ	ሺݏߗሻሿ݀ݏ	,			௧௧బ (28) 

where ݐ଴ is an initial time and ܼሺݏሻ ൌ ݁௜௦. We find after computation: ܴଵሺݍሻ ൌ ଵଶ ሺ1ݍ	 െ ሺܽ ൅ 3ܾሻ|ݍ|ଶሻ	,																																									         (29) ݄௧ଵሺݕሻ ൌ ௜ସ	ቂሺܽ െ ܾሻ ቀݍଷ݁ଷ௜௧ ൅ ଵଶ	ݍଷ݁ିଷ௜௧ቁ ൅ ቀሺܽ ൅ 3ܾሻݍݍଶ െ ቁݍ ݁ି௜௧ቃ ൅ െ ௜௖௘೔೟ଶ  (30)       		,	ܫ

With ܫ ൌ ଵଶ ቄ௖௢௦ሺଵିఆሻ௧ଵିఆ െ ௖௢௦ሺଵାఆሻ௧ଵାఆ ቅ െ ௜ଶ ቄ௦௜௡ሺଵିఆሻ௧ଵିఆ െ ௦௜௡ሺଵାఆሻ௧ଵାఆ ቅ , ݅ଶ ൌ െ1; 	1 ്  (31)    													.ߗ

According to the proposal and the above results we find: 

,ݐሺݖ  ,ߞ ሻݕ ൌ ܼሺݐሻݍ ൅ ߳൫݄௧ଵሺݍሻ ൅ ܼሺݐሻܴ௜ሺݍሻሺݐ െ ሻ൯ߞ ൅ ܱሺ߳ଶሻ,																					         (32) 

which diverges for long t because of the last term. Using the notion of renormalization constant of integration ቀడ௫ሺ௧,఍,௬ሺ఍ሻሻడ఍ |఍ୀ௧	 ൌ 0ቁ mentioned in the previous section and taking ݍሺߞሻ ൌ ݔ ሻ݁௜௵ሺ఍ሻ, we findߞሺݎ ൌ ݎ2 ݐ൫ݏ݋ܿ ൅ ሻ൯ߞሺ߆ െ ௥ఢଶ ݐሺ݊݅ݏ ൅ ሻሻߞሺ߆ ൅ ா௦௜௡ሺఆ௧ሻଵିఆమ 	+                    	ఢଶ ቄቀ௕ି௔ଶ ቁ ଷݎ 3ሺ݊݅ݏ ݐ ൅ ሻሻߞሺ߆ ൅ ሺܽ ൅ 3ܾሻ	ݎଷ ሺ݊݅ݏ ݐ ൅ ቅ	ሻሻߞሺ߆ ൅ ܱሺ߳ଶሻ.								       (33) 

 ቐௗ௥ௗ఍ ൌ ఢ௥ଶ 	ሺ1 െ ሺܽ ൅ 3ܾሻݎଶሻ ൅ ܱሺ߳ଶሻௗ௵ሺ఍ሻௗ఍ ൌ 0 ൅ ܱሺ߳ଶሻ	. 																																																													(34) 

The first equation of system (34) gives the stable cycle limit radius	ݎ௦ ൌ ଵඥሺ௔ାଷ௕ሻ	, with ሺܽ ൅ 3ܾሻ ് 0. 
For ܽ ൌ 0, ܾ ൌ ଵଷ we get the Rayleigh forced oscillator equation and the Equation (31) takes the form 
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௦ݎሺݔ ൌ 1, ,ݐ ሻ߆ ൌ 2 ݐሺݏ݋ܿ ൅ ൅	ሻ߆ ா௦௜௡ሺఆ௧ሻଵିఆమ 	൅	 ఢଵଶ	 3ሺ݊݅ݏ ݐ ൅ ሻ߆ ൅ ܱሺ߳ଶሻ.													      (35) 

Also for ܽ ൌ 1, ܾ ൌ 0 we deal with the forced Van der Pol oscillator equation and the Equation (33) becomes ݔሺݎ௦ ൌ 1, ,ݐ ሻ߆ ൌ 2 ݐሺݏ݋ܿ ൅ ൅	ሻ߆ ா௦௜௡ሺఆ௧ሻଵିఆమ 	െ	 ఢସ	 3ሺ݊݅ݏ ݐ ൅ ሻ߆ ൅ ܱሺ߳ଶሻ.													      (36) 

When we cancel the external force (ܧ ൌ 0), the Equation (36) reduces to the results found by Hasan (1981) and 
recently by Sarkar and Bhattacharjee (2010). 

Finally for ܽ ൌ 1, ܾ ൌ 1 we have the forced Van der Pol generalized oscillator equation and the Equation (34) 
becomes ݔ ቀݎ௦ ൌ ଵଶ , ,ݐ ቁ߆ ൌ ݐሺݏ݋ܿ ൅ ሻ߆ 	൅ ா௦௜௡ሺఆ௧ሻଵିఆమ 	൅ ܱሺ߳ଶሻ	.																					          (37) 

The integration of the Equations system (34) gives us:  

ቐݎሺݐሻ ൌ ௥బ௘ച೟మඥଵା௥బమሺ௔ାଷ௕ሻሺଵି௘ച೟ሻ ൅ ܱሺ߳ଶݐሻ߆ሺݐሻ ൌ ଴߆ ൅ ܱሺ߳ଶݐሻ. 																													             (38) 

For ߳ ൌ 0 we have a cycle limit radius	r: ቊݎሺݐሻ ൌ ݎ ൌ ௥బඥଵା௥బమሺ௔ାଷ௕ሻ	,																					߆ሺݐሻ ൌ 															.଴߆                       (39) 

It becomes, for ݎ଴ ൌ 1: ൝ݎሺݐሻ ൌ ݎ ൌ ଵඥଵାሺ௔ାଷ௕ሻ	,														߆ሺݐሻ ൌ 								.଴߆                           (40) 

4. Analysis Results 
In this section we will go through the graphical analysis of the numerical simulation figures below. These graphs 
are obtained on one hand by direct simulation of Equation (21) for some parameters values and on the other hand 
by simulation of the solution asymptotic Equation (33) found by the renormalization group method, for the same 
values of these parameters with the logician MATHEMATICA. 

 

 
Figure 1. Phase diagram: Van der Pol generalized oscillator, Van der Pol oscillator and Rayleigh oscillator, for ߳ ൌ 0.1, ܧ ൌ 0, ߗ ൌ 0 

 

 
Figure 2. Phase diagram: forced Van der Pol generalized oscillator, forced Van der Pol oscillator and forced 

Rayleigh oscillator, for ߳ ൌ 0.1, ܧ ൌ 1, ߗ ൌ 0.01 
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Figure 3. Phase diagram: forced Van der Pol generalized oscillator, forced Van der Pol oscillator and forced 

Rayleigh oscillator, for ߳ ൌ 0.1, ܧ ൌ 1, ߗ ൌ 0.1 

 

For each one of the Figures 1, 2, and 3, we have, on the left, the phase diagram of Van der Pol generalized 
oscillator, in the middle, the phase diagram of Van der Pol oscillator and on the right, the phase diagram of 
Rayleigh oscillator. These figures show us, progressively when one increases the magnitude of E and	Ω, the 
phase portrait goes from periodic condition or almost periodic to chaotic condition. They show us also, the 
effects of the control parameters a and b on the system. 

 

 
Figure 4. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.1, ܧ ൌ 1, ܽ ൌ 1, ܾ ൌ 1 

 

 
Figure 5. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.1, ܧ ൌ 1, ܽ ൌ 1, ܾ ൌ 0 

 

 

Figure 6. ݔሺݐሻ, for ∶ 	߳ ൌ 0.1, ߗ ൌ 0.1, ܧ ൌ 1, ܽ ൌ 0, ܾ ൌ 	 ଵଷ 
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Figure 7. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.01, ܧ ൌ 1, ܽ ൌ 1, ܾ ൌ 1 

 

 
Figure 8. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.01, ܧ ൌ 1, ܽ ൌ 1, ܾ ൌ 0 

 

 
Figure 9. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.01, ܧ ൌ 1, ܽ ൌ 0, ܾ ൌ ଵଷ 

 

 
Figure 10. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.99, ܧ ൌ 1, ܽ ൌ 1, ܾ ൌ 1 
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Figure 11. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.99, ܧ ൌ 1, ܽ ൌ 1, ܾ ൌ 0 

 

 
Figure 12. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.99, ܧ ൌ 1, ܽ ൌ 0, ܾ ൌ ଵଷ 

 

 
Figure 13. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.1, ܧ ൌ 0.1, ܽ ൌ 1, ܾ ൌ 1 

 

 
Figure 14. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.1, ܧ ൌ 0.1, ܽ ൌ 1, ܾ ൌ 0 



www.ccsenet.org/apr Applied Physics Research Vol. 5, No. 6; 2013 

81 
 

 
Figure 15. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.1, ܧ ൌ 0.1, ܽ ൌ 0, ܾ ൌ ଵଷ 

 

 
Figure 16. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.1, ܧ ൌ 0.01, ܽ ൌ 1, ܾ ൌ 1 

 

 
Figure 17. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.01, ܧ ൌ 0.01, ܽ ൌ 1, ܾ ൌ 0 

 

 
Figure 18. ݔሺݐሻ, for:	߳ ൌ 0.1, ߗ ൌ 0.01, ܧ ൌ 0.01, ܽ ൌ 1, ܾ ൌ 0 

 

As for the figures from (4) to (18) we have the graph of the exact solution of Equation (21) on the left and the 
graph of the approximate solution Equation (33) on the right. The chaotic behavior noticed in Figure (3) is 
confirmed in real space through the behavior of the curves in the Figures 4, 5, and 6 respectively (forced Van der 
Pol generalized, forced Van der Pol and forced Rayleigh oscillators). Furthermore the quasi-periodic oscillation 
is noticed in the behavior of the curves of the Figures 7, 8, and 9. 
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The second term (
ா௦௜௡ሺఆ௧ሻଵିఆమ ) of the solution for Equation (33) shows the appearance of the resonance for	Ω ൎ 1. 

This behavior is illustrated by the Figures 10, 11, and 12 where the dynamic system’s amplitude is increasing. 
We see through each figure that the approximate solution found approaches more or less the exact solution, 
which justifies that ours results are optimal.  

The equations of system (34) show us that the phase initial of dynamic system is a constant and the amplitude r 
is a function of both the time and the control parameters of system. We chose this initial constant equal to zero to 
simplify our simulation. Also, the first equation of the equations system (34) above, gives the stable cycle limit 
radius that is only a function of the parameters ܽ and	ܾ. They show also that there is the occurrence of the 
Hopf’s classical bifurcation. 

5. Conclusion 
We recalled the outline of the method of the renormalization group method for ordinary differential equations 
(ODE) which provides in addition to the solution, the renormalization group (EGR) which leads to the 
determination of the amplitude of the stable limit cycle. An application of this method for a forced Van der Pol 
generalized oscillator equation is made and the approximate solution found is valid for any order of the variable t. 
The numerical simulation of the forced Van der Pol generalized oscillator equation on one hand and the 
approximate solution found on the other hand for some values of control parameters show the method efficiency 
and the validity of the approximate solution found. We have noticed that these control parameters play a key role 
in the dynamic of the system. One notices also the primary resonance presence near the ષ ൌ ૚ zone and that 
the system presents a classical Hopf’s bifurcation through the renormalization equation. 

Acknowledgments 
The authors thank IMSP for his quality formation and the Beninese state which has fully funded this work. 

References 

Bender, C. M., & Orszag, S. A. (1978). Advanced Mathematical Methods for Scientists and Engineers. New 
York: Mcgraw-Hil. 

Chen, L. Y., Goldenfeld, N., & Oono, Y. (1994). Renormalization group theory for global asymptotic analysis. 
Phys. Rev. Lett., 73(10), 1311-1315. http://dx.doi.org/10.1103/PhysRevLett.73.1311 

Chen, L. Y., Goldenfeld, N., & Oono, Y. (1996). Renormalization group and singular perturbations: Multiple 
scales, boundary layer, and reductive perturbation theory. Phys. Rev., E54, 376-394. 
http://dx.doi.org/10.1103/PhysRevE.54.376 

Chiba, H. (2008a). 	ܥଵ Approximation of Vector Fields Based on Renormalization Group Method, SIAM. Appl. 
Dym. Syst., 7, 3, 895-932 (in press). 

Chiba, H. (2008b). Renormalization group method and its application to coupled oscillators. Retrieved from 
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1616-04.pdf 

De Pina Filho, A. C., & Dutra, M. S. (2009). Application of hybrid Van der Pol-Rayleigh oscillators for modeling 
of a Bipedal robot. Brazilian society of mechanical sciences and engineering. Retrieved from 
http://www.abcm.org.br/symposiumseries/sssm_vol2/contents/sssm_13.pdf 

Hasan, N. A. (1981). Introduction Perturbation Techniques. New York. 

Hinch, E. J. (1991). Perturbation Methods. Cambridge University press. 

Marios, T. (2006). Theoretical and Numerical Study of the Van der Pol equation. Retrieved from 
http://arxiv.org/ftp/arxiv/papers/0803/0803.1658.pdf 

Roberts, A. J. (1985). SIAM (Soc. Ind. Appl. Math.). J. math. Anal., 16, 1243. 

Sarkar, A., & Bhattacharjee, J. K. (2010). Center or limit cycle: Renormalization group as a probe. Retrieved 
from http://arxiv.org/pdf/1005.2858.pdf 

 

Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/3.0/). 


