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Abstract 

The matrix formalism is applied to describe various stratified and periodic systems that are used to couple optical 
energy into a dielectric film or medium. As the literature is often presenting cases for the transverse electric wave 
(TE), general analytical and numerical solutions are reviewed for many types of optical thin film systems with 
some emphasis on the transverse magnetic (TM) wave. This manuscript is divided into two main parts. In the 
first part, we look at stratified systems formed by a succession of multilayers and also present some applications 
for this type of optical systems such as bi-layer dielectric stacks. Tunneling across an air gap formed by two 
prisms’ long sides brought close to each other is also presented. Tunneling modes in optical system is reviewed 
in detail in systems that are probing an optical waveguide layer. In the second part of this manuscript, we are 
looking at optical systems in which a corrugated surface is used to couple energy into a medium. The matrix 
formalism used in this second part is applied mostly to grating waveguide structures and used in numerical 
computation of diffraction efficiencies (DE). Binary dielectric and metallic grating are also introduced with some 
emphasis on general ideas leading to the origin of photonic band-gap. This manuscript is reviewing various 
applications involving the matrix method supported by some results, but is also meant to be an overview with the 
main emphasis on optical thin film system grating waveguide structures. 

Keywords: homogenous optical thin film, stratified systems, grating waveguide  

1. Stratified Systems of Uniform Thin Film 

Multilayers have been treated extensively by using the matrix formalism in the literature as early as the 1950’s 
by Abelès (1950 and 1957) and Heavens (1960). The matrix formalism is still very much used nowadays as the 
method has been proved to be an excellent tool in providing very good results for various applications such as 
optical constants determinations reported by Lévesque, Paton and Payne (1994), Lévesque (2011a) and Salomon, 
Macleod and Tollin (1997), in stratified multilayered films spectroscopy demonstrated by Ohta and Ishida (1990), 
in photonic devices explored by Lévesque and Paton (1994) and Yeh and Yariv (1977), in waveguide devices 
designed by Lenaerts, Michel, Tilkens, Lion and Renotte (2005), and in grating waveguide structures presented 
in the works of Lalanne and Morris (1996), Moharam, Grann, Pommet and Gaylord (1995) and Born and Wolf 
(1980). 

1.1 Characteristic Matrix of a Homogeneous Thin Optical Film 

An optical thin film is homogeneous if its permittivity  (= n2) is equal to a constant throughout the whole 
material thickness d from which the film is made. In the previous definition of the material permittivity , n is 
referred to as the refractive index of the thin film. As the transverse electric (TE) wave is often treated in various 
texts such as Born and Wolf (1980), Hecht (2002), Lévesque (2011a), Haus (1984) and Macleod (2001), the 
transverse magnetic (TM) will be considered. Figure 1(a) illustrates the directions of the E and H field vectors in 
a homogeneous thin film bounded by two semi-infinite media of refractive index n1 and n3 for a TE wave. Figure 
1(b) depicts the corresponding directions defined in Figure 1(a) for the TM wave. Note that all the E-field vectors 
defined as pointing out the plane of Figure 1(a) keep their direction after a reflection or transmission at both 
interfaces 1 and 2. To be consistent with the definition of the E-field vectors for the TE wave (c.f. Figure 1(a), all 
tangential components of the E-field vectors were assumed to be along the same direction in Figure 1(b), that is 
in the +y-direction. Therefore, at normal incidence, the E-field vectors for both the TE and TM waves are 
assumed to keep their direction after a reflection or transmission. Note in Figure 1(b) that all the tangential 
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components of all the H-field vectors were also assumed to change their direction after a reflection at both 
interfaces 1 and 2 for consistency with the TE wave arbitrary definition. Consequently, at normal incidence, the 
H-field vectors for both the TE and TM waves are assumed to reverse their direction after a reflection and keep 
their direction after a transmission. The vector product E x B for all corresponding field vectors defined in figure 
1 is in the direction of the wave propagation, in accordance with the Poynting vector formulation. For all field 
vectors we also assumed the dependence	exp ቀെ݆൫ሬ݇Ԧ. Ԧݎ െ  ൯ቁ, where k = 2n/ is the propagation vector and ݐ߱
is the cyclic frequency. In the previous expression  is the wavelength of the electromagnetic wave in the 
vacuum. 

 

(a)                             (b) 

Figure 1. Representation of field vectors for (a) TE and (b) TM waves 
 

The expressions for the tangential components of both the E and H field vectors for the TM wave at each 
interface in figure 1b are: 
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where superscripts + or – means on the left or right of the interface, respectively. o and o in the set of Equations 
(1) and (2) are the permittivity and permeability of free space, respectively. 

The two sets of expressions for the E and H field tangential components at interfaces 1- and 2+ are used to find 
the characteristic matrix of the thin film. The other two sets will be used later to find the Fresnel coefficients r 
and t. From the set of equations at interface 1-, we write: 
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From Figure 1 and phase shift considerations, we can also write that 2 1 2 2exp( )i tE E jk h  and
'
2 2 2 2exp( )r rE E jk h  , where h2 = d2cos2 and k2 =n2ko, with ko = 2/. The set of equations at interface 2+ can 

now be written under the matrix form as: 
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By inverting the 2×2 matrix in Equation (4), we have: 
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and replacing the matrix Equation (5) into (3) it can be shown that: 
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The 2×2 matrix in Equation (6) is the characteristic matrix of the homogeneous thin film of thickness d2, where 
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and 2 are equal and they can be used in matrix Equation (6). Therefore, replacing 1 1y yE E  , 2 2y yE E  , 1 1z zH H 

and 2 2y yH H  into Equation (6), one finds: 
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The entries of the characteristic matrix M in Equation (7) are m11, m12, m21 and m22 and the expression for each of 
these is given in matrix Equation (6). Defining the reflection and transmission coefficients as r = Er1/Ei1 and t = 
Et2/Ei1, it can be found from Equation (7) that: 
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  for i = 1, 2 or 3. The reflectance R and transmittance T are then defined by Macleod 

(2001) and also by Moharam and Gaylord (1981) as: 
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where r* and t* mean the complex conjugate of r and t respectively. In the case of ideal dielectrics with real 
refractive indices n1, n2 or n3, the optical energy is partly reflected or transmitted without any dissipation of the 
energy (absorption) into each material and the sum of the reflectance and transmittance can be shown to be equal 
to 1 by using Equations (8), (9) and (10). 



www.ccsenet.org/apr Applied Physics Research Vol. 5, No. 5; 2013 

4 
 

1.2 Tunneling Across an Air Gap between the Prisms’ Long Faces 

Tunneling of electromagnetic waves is not often discussed as an application of a thin dielectric bounded by two 
semi-infinite media. The concept is interesting as it is analogous to a particle penetrating a barrier, which is 
referred to as tunneling in quantum mechanics in the textbooks by French (1978) and Liboff (1988). The 
electromagnetic field is evanescent at the interface of two dielectric media for angles of incidence 1 larger than 
the critical angle. This means that the E or H fields will decay exponentially within the air gap formed by the 
prisms’ long sides separated by a distance d2 as shown in Figure 2. The exponential decay also depends upon the 
wavelength of the electromagnetic radiation incoming from prism 1. As a result, tunneling of the electromagnetic 
wave is relatively easier to investigate at longer wavelength  such as microwaves, because the effect can be 
appreciated over a larger air gap between the prisms’ long faces.  

 

Figure 2. Tunneling of electromagnetic waves across an air gap formed by the long face of two identical right 
angle prisms 

 

Figure 3 is showing the results of the change in db signal of microwaves entering into prism 1 at  ~33 mm as d2 
is varied. The db signal is measured as 10 log(P/Po), where P is the power at a given value of d2 and Po is the 
reference power at d2 = 0. As we set P = Po at d2 = 0, the db signal is zero at d2 = 0 and the change in db signal is 
negative as d2 is varied from d2 = 0. In the set-up in Figure 2, prism 2 is displaced with a micrometer by a small 
distance in millimeters and the change in power is measured at each value of d2. As the system is symmetric and 
the incident angle 1 is kept constant at 45º during the experiment, Fresnel losses at both the input and output 
faces remain the same at each value of d2. Therefore, by taking the change in the db signal we cancel Fresnel 
losses and only the transmittance across the air gap bounded by two semi-infinite media with the same refractive 
indices of each identical prism is being detected. The transmittance T can also be calculated from Equation (10). 

Equation (10) is valid for both TE and TM wave, except we use 1/2( ) coso
i i i

o

Y n
 


  in the case of TE wave. By 

assuming that half of the total radiation is TE and the other half is TM, the average is obtained by merely adding 
the transmittance for TE and TM and then dividing by two. Then we take the logarithm in base 10, the result is 
multiplied by ten and then the calculation from the matrix method (solid curve in Figure 3) is then compared 
with the experimental values given by the change in db signal. At small values of d2, internal reflections within 
the air gap are important and they contribute to the transmittance. At larger values of d2 > 5mm, the internal 
reflections occurring within the air gap is making less contribution to the transmittance while some energy is 
leaking into prism 2. As the wave is exponentially decaying with distance, the logarithmic change is expected to 
be linear with distance at larger d2 as shown in Figure 3.  
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Figure 3. Data points with error bars of the change in db signal for the transmittance as a function of d2. The 

solid line is the change in db calculated from Equation (10). The refractive indices of each prism at  = 33 mm is 
n1 = n3 = 1.85. The incident angle 1 = 45º was kept constant during the experiment 

 

1.3 Tunneling by Coupling Gap across an Absorbing Thin Film (TM Waves) 

Tunneling by coupling gap was used to probe the properties of materials and determine the thickness of a 
dielectric layer as explored by Podgorsek and Franke (2002), Lévesque, Paton and Payne (1994) and Lévesque 
and Paton (1997). Let us consider two films bounded by two semi-infinite media as shown in Figure 4. The 
semi-infinite medium of refractive index n1 is a prism with a high refractive index. The refractive indices of the 
films of thicknesses d2 and d3 are n2 and n3, respectively. Note that the refractive index of the thin metallic film is 
complex as it is a conducting medium. A thin metallic film having a thickness d2, which is much smaller than the 
dielectric film thickness d3 is used as a coupling gap in order to allow tunneling into the dielectric film so that a 
waveguide mode can be supported. At a given incident angle 1, the incident incoming wave can penetrate across 
the coupling metal film so that the component of the propagation vector along the y-direction ß exactly matches 
an eigenmode vector of the dielectric waveguide. The number of tunneling dips should increase with the 
thickness d3 as more solutions for ß are found for larger thickness d3. When proper matching of the propagation 
vector components ß occurs, waveguide modes are being supported by the dielectric waveguide and the 
reflectance drops sharply at that given value of 1. A high refractive index prism is useful to make the field 
evanescent in the air so that the optical energy can be confined into the dielectric film. The field decays 
exponentially in the air from the dielectric air interface when the component of the propagation vector along x, 
k4x becomes a complex value. Assuming Snell’s law (n1sin1=n4sin4), one writes 
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In Equation (11), ko = 2/, 4 is the angle in the fourth medium (i.e., air) and it can be shown that k4x becomes a 
complex value for 1 > sin-1(n4/n1).  

 

0 5 10 15 20
-12

-10

-8

-6

-4

-2

0

2

d2 (mm)

db



www.ccsenet.org/apr Applied Physics Research Vol. 5, No. 5; 2013 

6 
 

 

Figure 4. Structure consisting of both the metal and dielectric films bounded by two semi-infinite media. The 
metal film thickness d2 is assumed to be much smaller than the dielectric film d3 

 

By applying the method presented in section 1i), it can be shown that the sets of E and H field vectors in the 
dielectric film can be cast under the same form as Equation (6), that is:  
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where the product of the 2×2 matrices M23 yields the characteristic matrix for the multi-layer formed by both the 
metal and the dielectric films. This means that the reflectance and transmittance given by Equations (8) and (9) 
can be used as long as m11, m12, m21 and m22 are the entries of M23 and Y3 is being replaced by
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for the TM and TE waves, respectively. Assuming a high refractive index n1 = 2.0 and n4 = 1 (air) and according 
to the condition set by Equation (11), waveguide modes can propagate for 1 > 30º. Equation (8) was used to 
compute the reflectance for the multi-layer of Figure 4, for n1 = 2.0, 2

2 2 18.6 0.6n j     , d2 = 50 nm, n3 =1.5, 

d3 = 1.5 µm and n4 =1 (air). Figure 5(a) shows the reflectance. Note that 4 reflectance dips at i < 50º are 
displaying a very small full width at half maximum (FWHM) and the last reflectivity dip near 53º is broader. As 
expected, the very first of these four reflectance dips is occurring at incident angles greater than sin-1(n4/n1), that 
is at i > 30º. 
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1(º)                                                  1(º) 

(a)                               (b) 

 
1(º)                                            1(º) 

(c)                                (d) 

 

1(º) 

(e) 
 

Figure 5. Reflectance for the structure shown in Figure 4 for the TM wave (a) Tunneling and SPR dips for a high 
refractive index prism n1 = 2.0. The following data were used in the computation: 2 = -18.6 -0.6j, d2 = 50 nm, n3 
=1.5, d3 = 1.5 µm and n4 =1 (air). (b) First tunneling dip at an incident angle of 35.3º (c) SPR dip at an incident 

angle of about 53º (d) Tunneling dips and SPR dip for the multi-layer structure with a high refractive index prism. 
The data used in the computation are the same as in part a) except d3 = 2.0 µm. (e) Tunneling dips for the 

multi-layer structure with a high refractive index prism. The data used in the computation are the same as in part 
a) except d3 = 10 µm 

 

The first four reflectivity dips with small (FWHM) are commonly referred to as tunneling dips and they depend 
on the real and imaginary parts of the dielectric layer and thickness d3. It was shown by Podgorsek and Franke 
(2002) and Lévesque, Paton and Payne (1994) that the position of these tunneling dips is mostly depending upon 
the real part of n3 and the depth depends strongly upon the imaginary part of n3. In the computation of the 
reflectance shown in Figure 5(a) n3 was assumed to be real. The last reflectance dip with a larger width in Figure 
5(a) is referred to as the surface plasmon resonance (SPR) dip discussed extensively in the literature by Burke, 
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Stegeman and Tamir (1986), Raether (1988), Welford (1991), Wang (2003), Nikolajsen, Leosson and 
Bozhevolnyi (2004), Homola, Yee and Gauglitz (1999), Matsubara, Kawata and Minami (1988) and Kano and 
Kawata (1994). The SPR dip is only depending upon the metal properties, that is, 2 and the metal thickness d2. 
The reflectance SPR dip was also used by Lévesque et al. (1994) and Lévesque (2011b) to estimate the metal 
permittivity 2 and determine the metal thickness d2. Figures 5(b) and 5(c) are showing the first tunneling and 
SPR dips, respectively. Note that the FWHM is much smaller for the tunneling dip (c.f. Figure 5b)).  

Figures 5(d) and 5(e) show the reflectance of the multi-layer structure for a dielectric layer of 2.5 µm and 10 µm, 
respectively. Note that the number of tunneling dips is larger for the dielectric layer of 10 µm as more modes can 
be supported by a larger waveguide film, but the SPR dip always occurs near 153º as it is not depending upon 
d3.  

1.4 Bi-Layer Thin Film Stack 

By-layer thin films are used as quarter wave dielectric stacks and they were reported by Yeh et al. (1977) and 
Barnes, Priest, Kitson and Sambles (1996) , in multi-layered system to control visible-light by Smith, Fakhouri, 
Pulpytel and Arefi-Khonsari (2012) or in solar energy material used for solar cells as demonstrated by Tazawa, 
Okada, Yoshimura and Ikezawa (2004). They also have been used in reflection optical filters, but grating used in 
guided-mode resonance filters explored by Tibuleac and Magnusson (1997) are performing better and they will 
be discussed in the next section. The basic structure shown in Figure 4 can be used repeatedly to form the 
bi-layer film stack shown in Figure 6. To enhance the reflectance in bi-layer stacks, two different dielectric films 
with low and high refractive indices are often used and they will be referred to as nL and nH, respectively. The 
bi-layer thin-film stack is bounded by two semi-infinite media of refractive indices n1 and nt.  

 

Figure 6. Bi-layer thin-film stack bounded by two semi-infinite media 
 

The basic unit of two consecutive films of thicknesses d2 and d3 can be used to treat the bi-layer thin-film stack 
illustrated in Figure 6. Repeating this basic unit having a total thickness d (= d2+d3) N times, the characteristic 
matrix of the resulting bi-layer stack M(Nd) is found by the matrix product of each individual unit M23 and as a 
result: 

                    23 23 23 23 23( ) ... ( ( ))NM Nd M M M M M d

N times

 
                        (14) 

where M23 is the characteristic matrix of one period of thickness d given by Equation (13), that is,  
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C D
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and ß2=k2h2 and ß3 = k3h3. 

Note that matrix M23(d) is unimodular as its determinant is equal to 1. The N power of a unimodular matrix 
M23(d) can be found on a direct proof based on the theory of matrices by Abelès (1950) and Born and Wolf 
(1980). From this direct proof, it can be shown for N periods of thickness d that: 

1 2 1

1 1 2

( ) ( ) ( )
( ( ))

( ) ( ) ( )
N N NN

N N N
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M d
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  
  
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  

 
   

                      (17) 

where 
1

( )
2

A D   and
1

2 1/2

sin[( 1)cos ]
( )

(1 )N

N
U







, which are referred to as the Chebyshev Polynomials of 

the second kind. From the previous analysis and definitions, it can be shown that for TE and TM waves: 

2 21
cos ( )sin

2
L H

H L

n n

n n
                                  (18) 

In Equation 18 we considered quarter-wave films and we draw our attention to the normal incidence case (1= 2 
= …= t =0º), that is ß = ß2 = ß3 = /2. 

Note that from values of nL and nH in bi-layer stacks such as special dielectric mirror reported by Kohoutek et al. 
(2008) and omnidirectional mirror designed by Kim and Hwangbo (2002), Deopura, Ullal, Temelkuran and Fink 
(2001), Chen et al. (1999) and Fink et al. (1998), the term within brackets in Equation 18 is often greater than 2. 
As a result,  cannot exceed unity, but for some values of ß the term  may become smaller than -1, which 
means that cos-1 will be complex. This can be seen from the definition of the inverse cosine in terms of a 
natural logarithm, i.e.,  

1 2cos ( ) ln( 1) ln( ) lniz i z z i be i b                               (19) 

From the previous expression, we can see that the term in bracket of the natural logarithm is always negative for 
z < -1, which means that it can be expressed under the polar form as bei. As b can be a fraction for z smaller 
than -1, the imaginary part of cos-1(z) can be fairly large. Therefore using simple trigonometry, it can be shown 
that UN () have exponential behavior for z < -1 and can be very large. This leads to a high reflectance as the 
number N of periods increases. Finally, Equation (8) can be used to calculate the coefficient of reflection r for the 
quarter-wave bi-layer stack for the TM wave, provided we set: 
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 

 





 

 


 

                          (20) 

and replace Y3 by 1/2( ) / coso
t t t

o

Y n
 


 . Likewise, the transmission coefficient t can also be calculated using the 

previous definitions and Equation (9). 

Figure 7 shows both the reflectance and the transmittance for a quarter wave bi-layer stacks of chalcogenide 
films that are used to produce dielectric mirrors such as those reported by Kohoutek et al. (2008). In Figure 7, we 
consider cases for N=5, N=15 and N = 50 and we assumed nH = 3.31, nL = 2.11, d2 =117nm and d3 = 183 nm. 
The refractive indices for nH and nL for each film forming the bi-layer as well as their numerical values for 
thicknesses d2 and d3 were obtained from the literature explored by Kohoutek et al. (2008). Note from values of 
nH, nL, d2 and d3 that were used to produce the curves in Figure 7, each film corresponds to a quarter-wave as the 
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product ß = (/nHd2 ~ (/nLd3~ /2 at  ~ 1550nm. Therefore, the reflectance should reach a maximum 
near  = 1550 nm and the transmittance should be reduced to a minimum as their sum must be equal to 1 based 
on the principle of energy conservation. 

 

(a)                                   (b) 

 

(c)                                   (d) 
Figure 7. R (black line) and T (gray line) for a quarter-wave dielectric stacks of films. In the calculation, we used 
nH = 3.31, nL = 2.11, d2 = 117 nm, d3 = 183 nm. (a) N = 5, (b) N= 15, (c) N = 25 (d) Reflectance curve for N = 

10, N = 20 and N = 30 

 

From Figure 7, it can be seen that the reflectance curve (black curve) is approaching unity over a fairly large 
bandwidth centered on 1550 nm. The bandwidth is looking as a top-hat shape-like Figure at N =15. For values of 
N greater than 15, no substantial change occurs regarding the spectral bandwidth, but more severe oscillations 
are appearing on either sides of the bandwidth window. In practice, an efficient dielectric mirror fabricated with 
15 periods or so should meet the specification for most experiments. 

2. Grating Waveguide Structures 

In the previous section, we introduced systems involving homogenous thin films and presented a method to 
compute the reflectance and transmittance based on the matrix formalism. In this section, we will discuss some 
optical systems such as surface relief grating. In such systems the refractive index varies periodically along their 
surface within regions that are comparable to the incident light wavelength . Abrupt changes in reflectivity or 
transmission were first observed in gratings as early as 1902 by Wood (1902). These so-called anomalies in 
diffraction efficiency (DE) occurring over an angle range or a wavelength spectrum are very different from the 
normally smooth diffraction curves. These abrupt changes in DE led researchers to design and investigate 
resonant filters for applications in many devices including gratings. 

Rigorous coupled wave analysis (RCWA) has been used extensively in the literature by Lenaerts et al. (2005), 
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Lalanne and Morris (1996) and Moharam et al. (1995) to calculate diffraction efficiencies (DE) in waveguide 
structures. In this section, the basic binary dielectric rectangular-groove grating is treated using the matrix 
formalism for the numerical method with careful considerations on the computation of DE for the TM wave. The 
results obtained for binary dielectric rectangular-groove grating are also applied to metallic grating. Introduction 
to photonic band gap systems are discussed and some examples are presented at the end of this section.  

2.1 Mathematical Description of Binary Dielectric Gratings 

Computations will be done for the TM wave on ridge binary grating bounded by two semi-infinite dielectric 
media of real permittivities 1 and 3. The type of structures that will be presented in this section is based on the 
structure depicted in Figure 8. In the case of resonance reflection filters explored by Tibuleac and Magnusson 
(1997), the grooved region of permittivity L and depth h is often filled by a material having a slightly lower 
permittivity than H.  

 

Figure 8. Basic structure of the binary rectangular-groove grating bounded by two semi-infinite dielectrics 

 

The relative permittivity (x) of the modulated region shown in Figure 8 is varying periodically along the 
x-direction and is defined as: 

         ( ) exp( 2 / )s
s

x jsx                                  (21) 

where s is the sth Fourier component of the relative permittivity in the grating region (0< z < h), which can be 
complex in the case of metallic gratings. The incident normalized magnetic field that is normal to the plane of 
incidence (cf. Figure 8) is given by: 

            , 1exp[ (sin cos )]inc y o i iH jk n x z                               (22) 

where ko = . i is the incident angle with respect to the z-axis as shown in Figure 8.  

The normalized solutions in regions 1 (z < 0) and 3 (z > h) are expressed as: 

     1, , 1,exp[ ( )]y inc y i xi zi
i

H H R j k x k z    ,                        (23) 

3, 3,exp[ ( ( ))]y i xi zi
i

H T j k x k z h    ,                        (24) 

where kxi is defined by the Floquet condition, i.e., 

    1( sin ( / ))xi o ik k n i                                (25) 

where i is an integer defining the order of the diffracted field into media 1 and 3.  

Note that we also assumed the dependence	exp ቀെ݆൫ሬ݇Ԧ. Ԧݎ െ  ൯ቁ as in section 1 for the sake of consistency. Inݐ߱
previous equations,  is the grating spacing, n1 ( 1 ) is the refractive index of medium 1 and  
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     
     

,                        (26) 

with l = 1, 3. n3 ( 3 ) is the refractive index of medium 3.  
Ri and Ti are the normalized electric-field amplitudes of the ith diffracted wave in media 1 and 3, respectively. In 
the grating region (0 < z < h) the tangential magnetic (y-component) and electric (x-component) fields of the TM 
wave may be expressed as a Fourier expansion: 

    1/2

( )exp( )

( ) ( )exp( )

y yi xi
i

o
x xi xi

io

H U z jk x

E j S z jk x



 

 
                           (27) 

where Uyi (z) and Sxi (z) are the normalized amplitudes of the ith space-harmonic which satisfy Maxwell’s 

equations, i.e.,   

         
1

( )

x z
o y

y
o z

E E
j H

z x
H

j E
x x






 
  

 





                                 (28) 

where  is the angular optical frequency. o and o are respectively the permittivity and permeability of free 
space. As the exp (jt) is used, all complex permittivity must be expressed under the form = ’ – j’’.   

Substituting the set of Equations (27) into Maxwell’s equations and eliminating Ez, the coupled-wave equations 
can be expressed in the matrix form as: 

                         
/ ' 0

/ ' 0
y y

x x

U z UE

S z SB

     
          

,                               (29) 

where z’ equals koz. In Equation (29), B = KxE-1Kx – I, E is the matrix formed by the permittivity elements, Kx is 
a diagonal matrix, with their diagonal entries being equal to kxm / ko and I is the identity matrix. 

Matrix Equation (29) for a refractive-index profile of thickness h is analogous to matrix Equation (6) for a 
homogenous thin film. In matrix Equation (6), a 2×2 characteristic matrix is defined from the properties of the 
homogenous thin film such as its refractive index and thickness, whereas in Equation (29) a 2×2 block matrix is 
used to characterize the refractive index profile thickness. 

Equation (29) under the matrix form can be reduced to  

             2 2/ 'y yU z EB U                                        (30) 

Matrix Equation (30) is analogous to a second order differential equation with a known coefficient that can be 
obtained from a matrix product. Therefore, solutions of Equation (30) and the set of Equation (29) for the space 
harmonics of the tangential magnetic and electric fields in the grating region are expressed as: 

          ,
1

( ) ( exp[ ] exp[ ( )])
n

yi i m m o m m o m
m

U z w c jk q z c jk q z h 


                   (31) 

,
1

( ) ( exp[ ] exp[ ( )])
n

xi i m m o m m o m
m

S z v c jk q z c jk q z h 


     , 
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where wi,,m and qm are the elements of the eigenvector matrix W and the positive square root of the eigenvalues 
of matrix G (=-EB), respectively. The quantities cm

+ and cm
 – are unknown constants (vectors) to be determined 

from the boundary conditions. The amplitudes of the diffracted fields Ri and Ti are calculated by matching the 
tangential electric and magnetic field components at the two boundaries. Using Equations (22), (23), (24) and 
(31) and the previously defined matrices, the boundary conditions at the input boundaries (z = 0 and z = h)) are: 

                 
,0

,0 1
1

0cos
i i

i i

R Wc WXc

zj
jZ R Vc VXc

n


 

 

 

  


  
                        (32) 

and  

         
3

i

i

WXc Wc T
z h

VXc Vc jZ T

 

 

 


 
                         (33) 

where X and Z1 are diagonal matrices with diagonal elements exp(-jkoqmh) and k1zi/(n1
2 ko), respectively. c+ and c- 

are vectors of the diffracted amplitude in the ith order. From (29) and (31), it can be shown that  

1V jE WQ                                   (34) 

where vm,l are the elements of the product matrix with Q being a diagonal matrix with diagonal entries ql. Z3 is 
the diagonal matrix with diagonal elements k3zi /(n3

2 ko). Multiplying each member of the first equation in set of 
Equation (33) by –jZ3 and using the second equation to eliminate Ti vectors c- and c+ are related by: 

          1
3 3( ) ( )c jZ W V jZ W V Xc      .                          (35) 

The main difference with homogenous thin film defined in section 1 is that a numerical solution is sought for the 
type of structure illustrated in Figure 8, which is a grating with a permittivity-index profile of high (H) and low 
(L) dielectric constant with a period . Therefore, we must express one of the vectors c+ or c- in terms of known 
eigenvalues or eigenvectors that is characterizing that particular grating. 

Multiplying each member of the first equation in set of Equation (32) by jZ1 and using the second one to 
eliminate Ri a numerical computation can be found for c+ by making used of Equation (35), that is:  

                          1
1 ,

1

cos
( ) i o

j
c C jZ

n

                                  (36) 

where  

       1
1 1 3 3[( ) ( ) ( ) ( ) ]C jZ W V jZ W V X jZ W V jZ W V X        .              (37) 

Note in Equation (36) that i,,o is a column vector. In the case of a solution truncated to the first negative and 
positive orders,  


















0

1

0

,oi                                   (38) 

assuming the incident wave to be a plane wave. In this particular case 

    


















0

)2,2(
1

cos
0

)
cos

( 1,1
1

jZ
n

jjZ
n

j
oi

 ,                           (39) 

where Z1(2,2) is the element on line 2 and column 2 of matrix Z1. Finally, the vector on the right-hand side of 
Equation (39) is applied to the inverse matrix of C (=C-1) to find the column vector for the diffracted amplitude 
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c+ from Equation (36). Then c- is found from Equation (35) and the normalized electric field amplitudes for Ri 
and Ti can be found from Equations (32) and (33). Only the DE in reflection and transmission for zeroth order 
are computed in the examples that will be discussed throughout this section. The diffraction efficiencies in both 
reflection (DER) and transmission (DET) are defined as:  

  0 0 1, 0 1Re( / ( cos ))r z o iDE R R k k n                             (40) 

and  

  
3, 0

0 0 2
3 1

cos
Re( ) / ( )z o i

t

k k
DE T T

n n

 .                           (41) 

2.2 Examples with Binary Dielectric Periodic Gratings 

Let us consider a binary rectangular-groove grating with real permittivity L and H as shown in Figure 8. In the 
case of notch filters reported by Bertoni, Cheo, and Tamir (1989), Wang, Magnusson, Bagby and Moharam 
(1990), Gale, Knop and Morf (1990) and Peng and Morris (1996), the higher permittivity value H (< x < ) 
is slightly greater than L< x < 2). Figure 9 shows the numerical computation for DE from the RCWA 
formulation for the TM wave when only three orders (m = -1, 0, 1) are retained in the computation at normal 
incidence. 

 

(a)                                  (b) 

 

(c)                                  (d) 
Figure 9. Diffraction efficiencies in reflection (DEr) and transmission (DEt) for the grating structure shown in 

Figure 8 at normal incidence. The following data were used to produce the numerical computations: H = 4.41, 
L = 4.00,  = 0.314 µm, h =0.134µm, 1 = 1.00(air) and 3 = 2.31. a) DEr displaying a very sharp peak near  
= 0.512µm b) DEt and the sum of DEr and DEt within the spectral range 0.3-1.0 µm. c) DEr and DEt within a 

very small spectral range. d) DEr at various thicknesses h. All other values afore-mentioned were kept the same 

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(µm)

D
E

r

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(µm)

D
E

t

0.511 0.5115 0.512
0

0.2

0.4

0.6

0.8

1

(µm)

D
E

r 
(b

la
ck

) 
an

d 
D

E
t 

(g
ra

y)

0.5

0.55

0.6

0.15
0.2

0.25
0.3

0

0.5

1

(µm)h(µm)

D
E

r



www.ccsenet.org/apr Applied Physics Research Vol. 5, No. 5; 2013 

15 
 

 
Figure 10. 3D plot of diffraction efficiencies in transmission (DEt). The following data were used to produce the 

numerical computations: H = 4.41, L = 4.00,  = 0.314 µm, h =0.134µm, 1 = 1.00(air) and 3 = 2.31 

 

The very sharp spike displayed in the DEr curve in Figure 9(a) has an FWHM smaller than 1 nm. This FWHM is 
much smaller than the bandwidth of bilayer stack shown in Figure 7. The reflectance curve for the bi-layer 
dielectric stacks were also displaying large oscillation on either sides of the bandwidth centered on 1550 nm. 
Note that there are very few oscillations within the spectral range shown in Figure 9(a). Figure 9(b) is showing 
DEt for the grating structure, which is also displaying a very sharp dip with a very small FWHM. The sum of DEr 
and DEt is also shown to be equal to 1 on most on the spectral range, which means that truncating the solution to 
the first positive and negative orders m = -1,0,1 is sufficient to yield enough accuracy for the numerical 
computation. The sum of DEr and DEt is slightly below 1 at shorter wavelengths and some more orders would be 
required to obtain a better accuracy in the numerical computation for  < 0.4 µm. Figure 9(c) is showing DEr and 
DEt within a nanometer spectral range to appreciate the small FWHM and Figure 9(d) is displaying DEr for 
various thickness h to see by how much the peak is shifted along the spectral axis. Figure 10 shows a 3D plot of 
DEt curves that meet at a single value of incident angle of 0º near  ~ 510 nm. Note the symmetry of each curve 
of DEt for incident angles that are different from normal incidence. As the incident angle approaches normal 
incidence, the two dips at ±i are getting closer to collapse at normal incidence near  ~ 510 nm. Therefore the 
DEt curves are forming two valleys which are crisscrossing and display a photonic band. This concept will be 
used in the next sections when photonic band gap are introduced. 

2.3 Examples with Metallic Periodic Gratings 

The theory presented in section 3.1 can be applied to metallic periodic gratings. For the TM wave many terms 
need to be retained in the numerical calculation to reach convergence as discussed by Li and Haggans (1993). 
Metallic periodic gratings are used to excite surface plasmons (SP) to improve 
Surface-enhanced-Raman-Scattering (SERS) sensor performances as reported by Sheng, Stepleman and Sanda 
(1982). Substituting Equation (21) and Equation (31) into Maxwell’s Equations (28) and eliminating Ez, it can be 
shown that  

    1
'

( )xm xm xm
i p yp yi

p o o

S k k
j U U

z k k
 


  


.                              (42) 

Equation (42) is one of the two coupled-wave equations involving the inverse permittivity for the case of TM 
polarization only. In the conventional formulation by Moharam and Gaylord (1981) and Moharam et al. (1995), 
the term 1

i p 
 is treated by taking the inverse of the matrix E defined by the permittivity components, with the i, 
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p elements being equal to (i-p). In the reformulation of the eigenvalue problem by Lalanne and Morris (1996), 
the term 1

i p 
 is considered in a different manner by forming a matrix A of the inverse-permittivity coefficient 

harmonics for the two regions (1/H and 1/L) inside the modulated region. Fourier expansion in Equation (21) is 
modified to:   

      
s

s
)/jsxexp()x(  211                       (43) 

where (1/)s is the sth Fourier component of the relative permittivity in the grating region. It was shown that this 
reformulation of the eigenvalue problem is converging more quickly than the conventional method as much less 
terms are required in the numerical computation. 

Since the coupled-wave equations do not involve the inverse of the permittivity in the coupled-wave equations 
for the TE wave, matrix A is not needed in numerical computations and the eigenvalue problem is greatly 
simplified in this case. As a result, solutions for the TE wave are more stable in metallic lamellar gratings. The 
theory presented earlier in sections 2i) and 2ii) is still applied to metallic periodic gratings, but the Fourier 
expansion in Equation (43) will be used instead to obtain faster convergence of the eigenvalue problem. For the 
sake of saving time a fairly accurate computation is reached after retaining ten orders. Figure 11 shows DEr for a 
metallic periodic grating using a 3D plot. This 3D plot is similar to Figure 10 for a binary dielectric grating 
except the FWHM is larger as a complex value is assumed for the metal. At a given wavelength  the reflectivity 
of the metallic grating should be symmetric with the incident angle i. If a reflectivity drops occurs due to SP at 
i, the metallic periodic grating should display a similar drop at -i. Note that two minima occur on either side of 
normal incidence (i = 0º) and one single minimum is displayed at normal incidence for  ~ 630 nm. Basically 
each minimum in DEr forms two valleys which crisscross at normal incidence and  ~ 630 nm. Essentially, the 
3D plots shown in Figures 10 and 11 would be forming a band in k-space as pointed out by Barnes, Priest, 
Kitson and Sambles (1996) and demonstrated by Lévesque and Rochon (2005). From Figure 11, two bands 
appear to be meeting at a common value of incident angle and wavelength. Note that the FWHM of each dip 
depends strongly upon the metal dielectric constant as shown in Figures 11(a) and 11(b) for gold and silver, 
respectively. 
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(b) 
Figure 11. 3D plots of DEr for a periodic metallic grating. In the calculation, we used 1 = 1,  = 600 nm and h = 

10.5 nm. a) gold with L = -10.7-j, H = 1 and 3 = -10.7-j b) silver L = -17.7-0.7j, H = 1 and 3 = -17.7-0.7j 

 
2.4 Single and Double Metallic Corrugated Surfaces 

Double metallic corrugated surfaces have been produced to generate a band gap. In some cases, the surface 
becomes corrugated in a periodic fashion and looks as a superposition of two sine waves having a different 
harmonic component as described by Barnes, Priest, Kitson and Sambles (1996) and Lévesque and Rochon 
(2005). The surface profile s(x) shown in the atomic microscope image in Figure 12 can be represented as 

                 1 1 2 2 2( ) sin( ) sin( )s x h K x h K x                                (44) 

where x is the spatial coordinate, h1 and h2 are the amplitudes of the two harmonic components K1 and K2, and 2 
is their relative phase. The harmonic components K1 and K2 are expressed as 2/1 and 2/2, respectively, 
where  is referred to as the grating pitch.   

 
Figure 12. Atomic force microscope image of a double metallic Au grating. The pitches here are 700 and 375 nm 

with their respective depths of 19  1 nm and 7.0  0.5 nm 

 

In the case of a single grating with a harmonic component K1, the 3D plot of DEr is shown in Figure 13(a) and 
looks very much like those obtained from numerical computation in Figure 11. Note that the signals obtained for 
the TM wave were normalized to that obtained for the TE wave. This was done as DEr for the TE was showing 
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no minimum of reflection. The signal ratio was defined as Rp/Rs. In the case of a double grating surface with two 
harmonic components such as the one shown in Figure 12, the two photonic bands are no longer meeting at a 
common point near 0º and near  ~ 750 nm as they open as shown in Figure 13(b). Clearly, a photonic gap is 
observed by superposing two gratings with different harmonic components. 

 

(a)                                 (b) 
Figure 13. (a) Normalized reflectance (Rp/Rs) curve for a single gold grating with  ~ 755 nm; (b) Normalized 

reflectance curve for a double metallic grating with 1 ~ 755 nm and  ~ 375 nm 
 
The modulated films were made by holographic technique to write surface relief structures as reported by 
Lévesque and Rochon (2005). One grating is carefully written to have a spacing vector K2 to generate a band gap 
in the SP dispersion curve. A second grating with grating spacing vector K1 is superimposed and allows the 
coupling of the incident light to generate the SP itself. The grating with the second order (K2 in this case) is 
therefore at the origin of the gap seen in the doubly corrugated surface shown in Figure 13(b).  

3. Conclusion 

The matrix formalism was shown to be efficient to predict the reflectance curve of both uniform films and 
periodic corrugated surfaces. It was shown that the reflectance derived from the matrix formalism is a method 
that describes precisely many optical thin film systems and grating structures. In some cases, the matrix 
formalism can be used to generate function curves that can be fitted to experimental data points. It was also 
shown that the matrix formalism can be used in numerical techniques and can be applied to periodic gratings to 
predict diffraction efficiencies.  
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