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Abstract 

Due to the advances of electronic and semiconductor technologies in recent years, it is possible to realize 
complex, low cost, low size, and low power consumption, high-speed signal processing devices. The progress of 
these devices has enabled the development of the medical Doppler ultrasound system. Color flow mapping 
(CFM), which is one of the display mode of Doppler ultrasound, requires high-speed multi-point (two- or 
three-dimensional) frequency analyses. From its birth till today, a complex autocorrelation (AC) method has 
been used for CFM because of its simplicity. In this paper, I propose the fast Fourier transform (FFT) method for 
the frequency analysis of CFM. CFM differs from spectrum Doppler, which shows accurate information of the 
blood flow in a narrow domain of a tomogram image. CFM uses color expression to display coarse information 
of the blood flow, such as mean velocity, intensity, and distribution. Because the calculation load of the 
frequency analysis is very small, the AC method has been used. However, by exploiting recent advances in 
hardware, new frequency analysis methods can be applied. In this paper, I evaluate a novel frequency analysis 
method based on FFTs, and compare its performance with the conventional AC method. Based on the results 
obtained, I reach the followings conclusions. With respect to mean velocity, the FFT method performs well when 
blood flow sensitivity is low. However, when blood flow sensitivity is high, the performance of the AC method 
is superior. Moreover, with respect to the distribution, compared to the FFT method, the AC method does not 
perform well under aliasing conditions. The AC method is effective only when the distribution is small. 

Keywords: blood flow, complex autocorrelation, Doppler ultrasound, pulse pair, short-time Fourier transform 

1. Introduction 

Due to the advances of electronic and semiconductor technologies in recent years, it is possible to realize 
complex, low cost, low size, and low power consumption, high-speed signal processing devices. Thus, high 
performance signal processing can be realized more easily. In this paper, I investigated the frequency analysis of 
color flow mapping (CFM) of Doppler ultrasound systems, which has not changed since its introduction in the 
1980s. In CFM processing, a high-order analog high-pass filter is used as a pre-processing step of the frequency 
analyzer. This filter is used to remove clatter (low-frequency and high-power noise) from the walls of blood 
vessels or heart. The dynamic range of the input of the frequency analyzer should be kept small. In the 1990s, 
new imaging techniques of mapping the clatter velocity became available, such as tissue Doppler imaging (TDI). 
In those days, it was difficult to simultaneously analyze blood flow and clatter. Because blood flow detection 
was not needed, TDI did not require a large dynamic range. However, in recent years, a high-dynamic range 
frequency analyzer can be easily realized using high-performance signal-processing devices. Since post filters 
following frequency analysis can be substituted, it is not necessary to use high-order pre filters. Blood velocity 
mapping in CFM is either two- or three-dimensional. Because the calculation load of the AC method is light, it is 
used since the introduction of CFM. Unlike the spectrum Doppler, which shows time frequency mapping, CFM 
represents roughly the blood flow parameters (mean velocity, distribution and power). Several types of 
short-time frequency analysis techniques are available. The short-time Fourier transform (STFT) method with a 
uniform time-frequency resolution is suitable for performing frequency analysis of nonstationary signals such as 
blood flow. In this paper, I propose a novel frequency analysis method for CFM. Specifically, I propose an FFT 
method and compare it with AC method. 
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2. CFM and Spectrum Doppler 

Figure 1 shows spectrum Doppler and CFM images of fluid phantom. These images show the fluid flow in a 
silicon tube with a 3-mm diameter. The upper images are CFM images, while the lower images are spectrum 
Doppler images. The spectrum Doppler images indicate the power and velocity of the fluid flow in the tube. The 
horizontal axis represents time, while the vertical axis represents the velocity corresponding to the Doppler shift 
frequency. The spectrum Doppler images change with respect to the change of the blood flow velocity (0.2 to 1.0 
m/s). Conversely, in CFM images, changes in the blood flow are represented by color variations. The features of 
CFM and spectrum Doppler are represented in Table 1. Because the clinical availability of CFM is existence of 
the blood flow, both its precision and resolution do not need high performance. Except for the calculation load, 
the FFT method (spectrum Doppler) is suitable for frequency analysis. 
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Figure 1. CFM and spectrum Doppler images 

 

Table 1. Comparison of Doppler ultrasound diagnoses 

Modality CFM Spectrum Doppler 

Clinical availability Existence of blood flow Measurement of blood flow 

Signal processing AC method FFT method 

Output parameters 
Total power, Mean velocity, 

Variance 
Spectra, Mean velocity, Peak 

velocity 

Precision/Resolution Poor Good 

Calculation load Small Large 

 
Due to hardware restrictions, early implementations of CFM adopted the AC method. Table 2 shows the 
calculation loads of the FFT (Figure 3) and AC methods (Figure 4). The calculation loads of both methods are 
estimated. Each pixel calculation requires N-time series. Because calculation load depends on the hardware 
architecture, I consider multiplication and addition as one-step operations, complex multiplication as a four-step 
operations and complex addition as a two-step operation. Moreover, we estimate memory access in signal 
processing by a 20% overhead of the total load. 
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Table 2. Estimations of calculation load of frequency analysis 

(a) FFT method 

Sub functions Calculations Steps 

Window (4) N 4N 

FFT (3) N×r + (4) N×r/2 4N×r 

Power (1) N ＋ (2) 2N 3N 

Parameters (1) 3N＋1 ＋ (2) 3N＋3 6N＋4 

Overhead (5) 20% of above total - 

Sum.        (4N×r ＋ 13N ＋4)×1.2  [steps] 

 

(b) AC method 

Sub functions Calculations Steps 

Q0 (1) N ＋ (4) N 5N 

  (1) 2(N－1) ＋ (4) N－1 + Table(atan( )) 6N－5 

Q2 (1) N－1 + (2) 2(N－1) + Table(sqrt( )) 3N－2 

Parameters (1) 1 ＋ (2) 1 2 

Overhead (5) 20% of above total - 

Sum.         (14N－5)×1.2  [steps] 

Notes 1: (1) Real add. (2) Real mul. (3) Comp. add. (4) Comp. mul. (5) Overhead. 

Notes 2: N＝2r. 

 
CFM images require 1.5×106 calculations/s (50000 pixels/frame and 30 frames/s). Table 3 shows calculation 
loads obtained by setting the time-series data N to 4, 8, and 16. Compared with the AC method, I see that the 
calculation load of the FFT method is approximately two times larger. Therefore, because the AC method has a 
light calculation load, it has been used until today. 

 

Table 3. Calculation load of CFM 

Data N AC method FFT method 

4 9.3 Mflops 15.1 Mflops 

8 19.4 Mflops 36.8 Mflops 

16 39.5 Mflops 72.8 Mflops 

 
3. Algorithm for Estimating Blood Flow Parameters 

3.1 Definition of Blood Flow Parameters 

In the CFM method, there are three types of blood flow parameters. The blood flow model in the frequency 
domain is shown in Figure 2. The average angular velocity, its distribution, and total spectrum power are defined 
as , 2 and TP respectively. 
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Figure 2. Definition of blood flow model 

 
The parameters TP,  , and 2  in Figure 2 are defined by Equations (1) to (3). 
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3.2 FFT Algorithm 

The computational algorithm used by the FFT method is shown in Figure 3. In the calculation process, the power 
spectrum series Pi is used as temporary data. The middle data P0, P1, and P2 (1st, 2nd and 3rd moments of spectra, 
respectively) are computed based on Pi. Next, these values are used to compute TP,  , and 2 .  

 

 

 

 

 

 

 

 
Figure 3. Algorithm of FFT method 

 

The input signal  tx~  is a quadrature-detection output signal that is the Doppler-shift signals dropped into 
baseband. It is expressed in Equation (4) as the composition of multiple sinusoidal waveforms (amplitude ai and 
phase 

i ). 

     ii

i

i jtjatx   expexp~                           (4) 

The FFT output  kjY ~  is denoted by Equation (5). 
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The power spectrum 
kP  of  kjY ~  is denoted by Equation (6). 
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When the FFT number is set to N, the moments are denoted by Equation (7). 
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Using Equations (1), (2), (3), and (7), we can compute the blood flow parameters, which are expressed by 
Equation (8). To compare with the AC method, the parameters are normalized by the FFT number N. Moreover, I 
normalized   by the sampling angle-frequency 

s . 
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3.3 AC Algorithm 

The computational algorithm used by the AC method is shown in Figure 4. The middle data Q0, Q1, and Q2 (1st, 
2nd and 3rd moments corresponding to Equations (1) to (3), respectively) are calculated based on )0(

~
C  and 

)(
~ C . These values are computed similar to the FFT method, while   and 2  are approximated. 

 

 

Figure 4. Algorithm of AC method 

 

The frequency analysis of the AC method uses a complex autocorrelation (pulse pair) algorithm. Specifically, it 
multiplies the input signal  tx~  with the conjugate signal  tx *~ , which has a phase difference (sampling 
period τ). 
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Here, CR and CI are the real and imaginary parts of the (N－1) addition, and can be denoted by Equation (10). 
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Equation (11) defines the moments Q0, Q1, and Q2. The expressions for Q1 and Q2 are approximations. 
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Using these moments, we compute TP,  , 2  according to Equation (12). Here these parameters are 
normalized by time series N (for comparison with the FFT method), and   is normalized by the range of 

2/ . 

 

22 2 2 2
2

0 1
, ,

1 0

1 2
1

4 0 0 4 0

AC AC

AC

C N Q
TP

N N Q

CR CI Q Q

Q Q Q



 

  


                  



                        (12) 

4. Performances of Blood Flow Parameter Estimation 

4.1 Single Sinusoidal Waveform Comparison 

When the sinusoidal waveform   )exp(~ tjatx ii   is applied to Equations (6) and (11), the TPFFT and TPAC 
values are obtained according to Equations (13) and (14), respectively. The values of TPFFT and TPAC are equal. 
Because a typical input signal consists of several sinusoidal waveforms (Equation (4)), TPFFT and TPAC are 
always equal. 
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The values of   and 2  are plotted in Figures 5(a) and 5(b). The horizontal axis represents  , which ranges 
from 0 to π/2. The time series N is set to 32. In Figure 5(a), although 

AC  is computed correctly, the 
discontinuity of the time window generates vibration on 

FFT . These vibrations can be suppressed if a window 
function is applied prior to FFT processing. Moreover, because 2  is affected by the vibrations of  , FFT

2  
becomes large. The results of parameter estimation are summarized in Table 4. Based on these results, I see that 
in general, the AC method is stable for a single sinusoidal waveform input. 

 

 

 

 

 

 

 
 

 

 
 

Figure 5. Simulation of a single sinusoidal waveform 
Estimation of  , (b) Estimation of 2  
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Table 4. Comparison of estimated parameters for a single sinusoidal waveform 

Method AC FFT 

TP Correct Correct 

  Correct Correct (preprocessing window is required) 
2  Correct Affected by   

 

4.2 2  Comparison 

First, we need to define the range of 2 . For simplicity, I set   to 0 and compute the maximum value of 2 . 
In Figure 6, I represent several types of 2  computational models. Figures 6 (a), (b), and (c) correspond to 
models of white noise and high-frequency noise and a pair of symmetrical sinusoidal waveforms, respectively. 
The corresponding distributions a

2 , b
2 , and c

2  are obtained by Equation (15). 
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This result indicates that the two-tone model (a pair of symmetrical sinusoidal waveforms shown in Figure 6(c)) 
achives the maximum range of 2 . Figure 7 shows the estimated values of 2  obtained by this model. Figure 
7(a) shows the input signal  tx~ , which is a mixture of two-tone sine waves with 40/1    (near 0 Hz) and 

2 . The frequency difference 
12    is expressed as  . As shown in Equation (16), the amplitudes of the 

two waveforms are equal. 

     tjtjtx 21 expexp~                                  (16) 

Figure 7(b) shows the estimated values of 2 . Because aliasing occurs when   exceeds 2/ ,   decreases 
and 2

AC breaks at 4/2 . However, because all spectrum series are required in the calculation process of 
2

FFT , the exact moments are computed based on baseline shift information. Because   does not break until 
it reaches  , 2

FFT  can estimate the maximum value of 2 . The comparison of the estimated values of 2  is 
shown in Table 5. The comparison reveals that the range of 2

FFT  is larger than that of 2
AC , and 2

FFT  is 
stable. 
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Table 5. Comparison of estimated values of 2  using two-tone sinusoidal waves 

Method AC FFT 

2  

Error 
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4.3 Performance Comparison with Respect to Clatter 

In Doppler ultrasound diagnosis, a high-intensity low-frequency signal (called clatter) is introduced into weak 
blood flow signals. Clatter is generated near walls of blood vessels or heart walls, and has a significant influence 
on the estimation of  . I investigate the influence of clatter on   using the two frequency signal inputs shown 
in Equation (17). Figure 8(a) shows the input signal model used, which has a clatter component (with angular 
frequency 

1 ) and a blood flow component (with angular frequency 
2 ). The power of clatter and blood flow 

is set to P1 ( 2
1a ) and P2 ( 2

2a ) respectively. 
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The resulting estimated values of   are shown in Figure 8 (b). Here, 
1  and 

2  are set to π/40 and π/5 
respectively. I compute 

FFT  and 
AC  by changing the power ratios P1/P2 ( 2

2
2

1 / aa ) from –10 dB to +10 dB. 

FFT  is linearly related to P1/P2 (has a dividing point) and is expressed by Equation (18). 
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Conversely, 
AC  is equal to the angle between the synthetic vector of the component 

1  
(

1111 sincos   jPP ) and that of 
2  (

2222 sincos   jPP ), and is expressed by Equation (19). Therefore, 

AC  and P1/P2 are non-linearly related, and 
AC  decreases as P1/P2 increases. The comparison results of   

are presented in Table 6. The estimated values of 
AC  are lower in the presence of clatter. 
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Figure 8. Comparison of estimated values of   using two-tone sinusoidal waves 

(a) Model of  tx~ , (b) Estimation of   

 

Table 6. Comparison of   affected due to clatter 

Method AC FFT 

  

Affected by clatter: 

Under estimation at 

P1/P2 > 0dB 

Correct 

 

4.4 Performance Comparison with Respect to Noise (Influence on  ) 

In Doppler ultrasound diagnosis, the sensitivity of blood flow plays an important role in CFM. Even when S/N is 
poor, exact blood flow estimation is required. To investigate the influence of noise on  , I use the model of 
 tx~  shown in Figure 9(a), which is a mixture of white noise and a single sinusoidal waveform. The noise to 

signal ratio is denoted by   (the power ratio of the 
0  component), and noise is uniformly distributed from 

  to  . The 0th and 1st moments, N0 and N1 , respectively, of noise are expressed by Equation (20). Because 
the 1st moment is an odd function, N1 becomes zero. 
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When the 0th and 1st moments of 
0  are set to 

00P  and 
01P  respectively, I can use the expression of N1 and 

N2 of Equation (20) and obtain the expression of 
FFT  shown in Equation (21). 
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In the AC method, I compute 
AC  using the angle of  C

~  in complex coordinates expressed by Equation (9). 
The white noise component  ir j ,  is added to the tip of the 

0  component. As shown in Figure 9(b), the 
velocity vector is distributed on a concentric circle with radius  . Here,  ir j ,  represents the complex 
random noise. 

  

  
































1

1
0

1

1
0

1

2/cos1

2/sin1
tan N

i
r

N

i
i

AC

i

i




                       (22) 

When the average autocorrelation (with number N–1) is calculated using Equation (22), the synthetic vector 
converges on the center of a concentric circle and can be approximated using Equation (23). 



www.ccsenet.org/apr Applied Physics Research Vol. 5, No. 2; 2013 

10 
 

0lim  
 AC

N
                                   (23) 

The simulation results obtained using Equation (24) show that the noise ratio α changes from –10 dB to 10 dB. 
The results are presented in Figure 9(c). 

   ir jtjtx  ,)exp(~
0                               (24) 

Here, ω0 is set to π/5. 
When the noise level is lower than the signal level, 

FFT  decreases and 
AC  is not easily affected by noise. 

Moreover, when the signal level is lower than the noise level, 
AC  also decreases and its accuracy is less than 

that of 
FFT  (α exceeds 8 dB in Figure 9(c)). 

 



P(ω)

0-π π

1

α

ω0
0

α

Re

Im

1

0

0.25

σ2

π2/4

FFT

AC

AC
2

FFT
2

π2/8

0
α(dB)

5 10-5-10 0
α(dB)

5 10-5-10

0.125

0

(a) (b)

(c) (d)  
Figure 9. Simulations of white-noise model 

(a) Model of  tx~ , (b) AC Model of  tx~ , (c) Estimation of  , (d) Estimation of σ2. 
 

4.5 Performance Comparison with Respect to Noise (Influence on σ2)   

Next, I set ω0 to zero in Equation (24) and compare the performance of σ2. The norm of the synthetic vector in 
the AC method, NORM, is obtained by Equation (25). 

221 1

1 1

2

1 1
cos 2 sin 2

1

2

N N

i i

i i
NORM

N N NN

N
N

   



 

 

                   
      

   
 

                      (25) 

Here, in the domain   Ni /20 , I generate vectors with equal imaginary parts ( 2//20   Ni  and 
  Ni /22/ ). Because NTPAC  21  , the average of these synthetic vectors is regarded as  N/,1  . 

The value of σAC
2 is obtained by Equation (26). 

































N

N

TP

NORM

AC
AC 2

2
22

2

1
2

1
1

4
1

4 

                       (26) 

In the FFT method, TPFFT and P2 are obtained as follows; 
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NTPFFT  21  , 2
2/

1

2

22  





  



N

i
FFTN

i
P  , 

The value of 2
FFT  is denoted by Equation (27). 

 
  

  
 

2 2
2

2 2

2 2

2

1 22

241

1 2

12 1

FFT

N N N

N N

N N

N N

 


 


  
 

  
 

                        (27) 

Because it is difficult to directly compare Equations (26) and (27), in Figure 9(d), I present the simulation results 
for 2

FFT  and σAC
2  obtained by changing the value of   in Equation (24) from –10 to 10 dB. The AC 

method tends to be affected by noise. When the noise level increases, the accuracy of 
AC  deteriorates and the 

value of σAC
2 increases. The performance characteristics of the two methods with respect to noise are 

summarized in Table 7. 

 

Table 7. Comparison of   and 2  affected due to noise 

Method AC FFT 

  
Not affected by noise 

at low noise condition 

Under estimated 

at low noise condition 

2  
Affected by noise 

at high noise condition 
Correct 

 

5. Considerations 

In Section 4, I investigated the fundamental characteristics of the blood flow parameters (TP,   and σ2) using a 
simple sinusoidal input signal. However, because in actual blood flow the velocity changes, in this section, I 
investigate the characteristics of blood flow parameters using a wide-band waveform. For example, in the current 
CFM processing, when   becomes large, σ2 increases. This occurs because Equation (12) is an approximate 
expression. Therefore, the display of turbulent flow in conventional CFM systems cannot distinguish whether it 
depends on wide-band blood flow or on measurement errors. This is a problem when using CFM as a blood flow 
measurement system. In Figure 10, I compare the estimated values of   and σ2 obtained by the the AC and 
FFT methods. In Figure 10(a), I present the frequency fluctuation model where its input signal  tx~  (Equation 
(28)) is frequency modulated by the noise signal  tN

~  (with central angular frequency ω1 and band-width β). In 
Figure 10, ω1 is set to π/10 and β is changed from 0.02π to 2π. 

   )~
exp(~

1 tNjtjtx                                (28) 

In the AC method, 2
AC  corresponds to the variation of the synthetic vector shown in Figure 10(b). The real 

part Re and, imaginary part Im, synthetic vector angle  , norm of synthetic vector NORM, and total power TPAC 
are expressed by Equations (29), (30), (31), and (32), respectively. 


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










 






 

1

1

1

1

sinImcosRe
N

i

N

i N

i

N

i                       (29) 







 

Re

Im
tan

2

1 1                                   (30) 

2 21 1

1 1

cos sin
N N

i i

i i
NORM

N N
   

 

 

                          
                             (31) 
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
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Using Equations (29), (30), (31), and (32), I obtain Equation (33), which expresses 2
AC  

2
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2 21 1

2
1 1

1
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cos sin

1
4

AC
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N N

i i
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i i
N N
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 


 
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 
  

 
                           
 
  
 

 
                        (33) 

In the FFT method, TPFFT and P2 are denoted by Equations (34) and (35), respectively. 
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i
FFT 




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


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
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1
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
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

N

i
FFTN

i
P                                  (35) 

Using Equations (8), (34), and (35), Equation (36) is obtained, which expresses 2
FFT . 
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Figure 10. Simulations of wide-band model 

(a) Model of  tx~ , (b) AC Model of  tx~ , (c) Estimation of  , (d) Estimation of σ2 
 

Because it is difficult to directly compare Equations (33) and (36), I present the estimation results of 2
FFT  and 
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2
AC  obtained by changing the parameter β of the input signal in Figure 10(d). In general, the influence of the 

distribution generated by frequency modulation in the AC method is larger than that in the FFT method. In 
Figure 10(c), I see that when the fluctuation width is small (β is smaller than π), 

AC  becomes more stable than 

FFT . Conversely, when the fluctuation width is large, 
AC  becomes unstable. In Table 8, I summarize my 

findings on how the bandwidth (wide-band model) influences the values of   and σ2. 

 
Table 8. Comparison of   and σ2 affected by a wide-band signal 

Method AC FFT 

  
Affected by wide-band 

at high bandwidth    

Over estimated 

at low bandwidth 
2  Over estimated Correct 

 

6. Conclusions 

Since the introduction of CFM, frequency analysis based on the AC method has been used. Because the AC 
method has light calculation load and is easily implemented, it was thought to be the best solution for CFM 
processing. For example, its calculation load is half of that of the FFT method. Due to the recent advances in 
signal-processing devices, hardware size is no longer an issue, which enables the use of the FFT method in CFM 
processing. Hence, we used mathematical expressions and simulations and performed a comparative evaluation 
of the performance of the conventional AC method and the new FFT method. The results show that when blood 
flow sensitivity is low, the performance of the FFT method for computing mean velocity in the presence of 
clatter or noise is good. Conversely, when blood flow sensitivity is high, the AC method achieves excellent 
performance. Moreover, compared with the FFT method, the distribution in the AC method is weak under 
aliasing conditions. It turns out that the AC method is effective only when the distribution is small. 
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