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Abstract 

It has been shown in an earlier publication (Hynecek, 2013) that the frame dragging effect due to the Earth's 
rotation, which is claimed that the Gravity Probe B (GP-B) has detected, cannot exist. In this paper it is shown 
that the Geodetic Precession, which the GP-B has also measured, and is typically calculated from the Einstein's 
General Relativity Theory (GRT), can also be calculated from a different metric. When the results of 
calculations are compared side by side the differences are very small, but it becomes clear that the GRT actually 
may not be providing the correct derivation of formula for this effect. The one reason among several others is 
due to the fact that the GRT derivation, as is shown in this paper, also leads to the derivation of the classical 
Kepler's third law for circular orbits, which is easily derived from the Newtonian physics, and should therefore 
hold true only in the flat space-time geometry.  

Keywords: Gravity Probe B, Metric Theory of Gravity, curved space-time metric, Schwarzschild metric, 
Christoffel coefficients, covariant derivative, Kepler's third law for circular orbits, geodetic precession 

1. Introduction       

Since the mathematicians have invaded the theory of relativity, I do not understand it myself anymore. 

Albert Einstein 
The geodetic precession is an effect that is predicted from the metric theory of gravity (MTG) and also from the 
GRT, which is the subset of MTG. The reason for this precession is the curved space-time. The precession 
calculation is actually a nice exercise in geometry that is performed in the next section of this paper for a new 
metric derived earlier by Hynecek (2012). Once the calculation procedure is established and the prediction 
compared with experimental results of GP-B, another calculation, along the same lines, is made using the 
Schwarzschild metric. Both theoretical predictions are then compared with observations and it is concluded that 
the GP-B has actually proved the correctness of the new MTG metric rather than the Schwarzschild metric. 
There are several reasons for this conclusion, as is described in detail in the following sections of the paper, with 
the main one being the unexpected discovery of a hidden error in the GRT calculations that falsely forces an 
agreement between the theory and experiment.       

2. Mathematical Background 

For the derivation of geodetic precession it will be necessary to know the metric and from that the Christoffel 
coefficients. The metric line element for the space-time of the centrally gravitating body that does not rotate, and 
as expressed in the standard spherical coordinates, was derived previously in MTG by Hynecek (2012):  

  2
00

222
00

2 )(  dgdcdtgds                                (1) 

where the metric variables have the usual definitions: dρ = g00
-1/2dr, g00 = exp(-Rs/ρ), dΩ

2 = dϑ2 + sin2ϑdϕ2, and 
where: Rs = 2κM/c2 is the Schwarzschild radius. It was also shown previously that this metric agrees well with 
the famous four tests of the GRT and that it does not lead to any pathology such as the event horizon and Black 
Holes. The Christoffel coefficients that will be needed for the derivation of geodetic precession were also 
derived for this metric earlier by Hynecek (2007) and are as follows: 
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In these formulas the parameter ϕc, which is the normalized potential and should not be confused with the angle ϕ, was introduced to simplify notation and is equal to: ϕc = Rs/2ρ. The notation for the metric signature was also 
modified to read: (0, -r, -ϑ, -ϕ). In addition it was assumed that without the loss of generality the satellite is 
orbiting Earth in the equatorial plane. In actuality the satellite that has carried four gyroscopes has orbited in the 
precise polar orbit. This modification is not important for the results of this paper's derivations and it is only a 
matter of calculation convenience. Of course, there are many subtle effects that can have a significant influence 
on the experimental results and most likely would mask the frame dragging phenomenon if such an effect had 
actually existed. These are, for example, the imperfect shape of Earth, which is not precisely spherical, the tidal 
effects, the gyroscope powering patches, and so on (NASA, 2008, 2011). All these problems are discussed in the 
relevant literature (Wikipedia, 2013) and are not the subject of this paper. 

Because this metric and the related Christoffel coefficients are new and have not been previously used for this 
type of calculations this work was exciting for the author with a degree of anxiety and anticipation whether the 
calculation results would actually agree with the experimental results and would thus prove the correctness of the 
new MTG metric and the corresponding curved space-time that has no event horizon and no Black Hole 
pathologies.   

The geodetic precession is calculated by transporting the spin vector S of a gyroscope in a parallel transport 
fashion along the satellite's orbit. This means that the covariant derivative of this vector along this trajectory 
must be zero. This is usually written in the tensor calculus coordinate notation according to Synge and Schild 
(1949) as follows: 

     0 kji
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                                   (6) 

The variables uk are the components of the trajectory velocity 4-vector defined below: 
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The other two velocity vector components are zero, because the orbital radius and the angle ϑ are considered 
constant. Decomposing the formula in Equation 6 into its components and always keeping in mind that the 
orbital radius is constant this equation results in the following formulas:  
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Equation for the spin vector component related to ϑ is not important because this component is a constant of 
motion. Differentiating Equation 10 with respect to τ and substituting into the result of differentiation 
expressions for the Christoffel coefficients yields the following:   
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In the next step of derivation it is necessary to find the velocity vector components appearing in Equation 12. 
This is accomplished by a covariant differentiation of the velocity vector u, again along the orbit trajectory, 
where for the radial component of this vector holds the following:  
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                            (13) 

The second equation for the velocity vector components is obtained from the metric considering that ds = cdτ: 
2222022 )()(   ueuec cc                                (14) 

Solving this set of two equations for the two unknowns and again after the substitution for the Christoffel 
coefficients the results become as follows:  

 cecu c
 2220 )1()(                                   (15) 

  ce
c

u c 


 2

2

2
2)(                                    (16) 

The formula in Equation 12 represents a harmonic motion with the frequency ωsτ. By substituting into this 
formula the expressions from Equations 15 and 16 the result for this frequency, which is the proper frequency, 
becomes: 
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In the next step this frequency will be observed by a distant observer. This is indicated by a change in the 
subscript: τ => t. The frequency transformation formula can be derived from Equation 15 resulting in the 
following: 
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This frequency will now be compared with the reference orbital frequency that could be measured, for example, 
by a frequency counter representing clocks onboard of the satellite. The satellite orbital frequency observed by a 
distant observer is found from the Kepler's third law for circular orbits as published by Hynecek (2010), or 
alternately as can be derived from the formula: ωkt = cuϕ/u0. To find the corresponding satellite onboard 
frequency it is necessary to use the frequency transformation formula: ωτ = ωt exp(ϕc), which is the well known 
gravitational red shift formula.The detail derivation of this relation is described in the Appendix. Therefore, for 
the orbital frequency onboard of the satellite that determines the periodic observations of the reference star and is 
expressed in terms of the orbital frequency ωt0 observed by a distant observer it must hold: 
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Dividing Equation 18 by Equation 19 results in the formula for the spin vector frequency normalized to the 
satellite orbital frequency where both of these frequencies are now referenced to a distant observer.   
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After taking the square root of Equation 20, expanding the result into a power series, and neglecting the higher 
order terms, the final formula for the geodetic precession is obtained:   
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c                             (21) 
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3. Comparison with experiments 

For the evaluation of the gyroscope's geodetic precession drift angle per a single orbit or per a number of orbits 
N, or per a given time period, the formula in Equation 21 is slightly modified as follows:  
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The value of the physical radius ρ(r) of satellite trajectory in the Earth's orbit is very close to the natural orbital 
radius value r. The difference is only a few centimeters, because the mass of Earth is relatively small and its 
Schwarzschild radius is only: Rs = 0.887cm. The normalized difference between the physical and natural radii is 
shown in Figure 1. Such a small difference will, therefore, be neglected in following calculations; however, the 
physical radius may play a significant role in strong gravitation fields of stars such as Pulsars and similar very 
compact bodies existing in the universe. The geodetic precession drift angle for the Earth's satellite orbit is then 
found as follows:  
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where R0 is the satellite orbit height above the Earth's surface, Re is the radius of Earth, and t0 is the satellite 
orbital period t0 = 5859s. The result obtained from this formula agrees reasonably well with observations as can 
be seen in Figure 2. The West-East drift, however, is smaller than the experimental inaccuracies and is most 
likely caused by other factors such as the imperfect non-spherical shape of Earth rather than by the claimed 
frame dragging effect.   

It is therefore clear that the metric in Equation 1 as well as the above described derivation of geodetic precession 
formula are correct. Because the metric that was used is not the GRT Schwarzschild metric, it is reasonable to 
expect that there might be a problem somewhere, because the two different metrics typically should not yield 
exactly the same results. It is also clear that this experimental result in addition of proving the correctness of the 
new MTG metric also proves the correctness of the relativistic formula for the Kepler's third law for circular 
orbits as derived earlier by Hynecek (2010). In the following section the same derivation as the one given in this 
section will be presented using the Schwarzschild metric. 
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Figure 1. Normalized difference between the physical radius ρ(r) and the natural radius r as a function of r 
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Figure 2. The Gyro's drift data from the GP-B experiment according to the final report by Everitt et al. (2011) 

 

4. The GRT Treatment 

The derivation presented in this section will thus start with the well known Schwarzschild metric line element: 

 2221
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where the time metric coefficient is equal to: g00 = 1 - Rs/r. The corresponding Christoffel coefficients that will 
be needed can be found elsewhere (Weinberg, 1972) and are as follows:  
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The component equations for the covariant spin vector derivative of the parallel transport along the satellite orbit 
are, of course, the same, so they do not need to be repeated here again. The second derivative of radial 
component of the spin vector S, after the substitution of corresponding Christoffel coefficients, then becomes as 
follows: 
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The velocity components appearing in Equation 29 can be found again by a covariant differentiation along the 
satellite trajectory of the velocity vector u and from the Schwarzschild metric with the following results: 
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Similarly as in Equation 17, by using the formulas derived in Equations 30 and 31, the spin vector angular 
frequency ωsτ is found to be:   
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Surprisingly, this is the classical Newton's physics formula for the frequency that corresponds to the Kepler's 
third law for circular orbits as observed by a distant observer even though ωsτ is still the proper angular 
frequency referenced to the satellite reference frame. Nevertheless, this spin vector frequency must be 
transformed to the distant observer reference frame as before. After the transformation according to Equation 30 
the result is:  
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In the next step of derivation it is again necessary to find the expression for the reference orbital frequency that is 
needed for the normalization. The formula is found similarly as in Equation 19 using the expression for the 
Kepler's third law frequency: ωkt = cuϕ/u0 = c(Rs/2r3)1/2. The same result is obtained using the formula derived 
earlier by Hynecek (2010) for the Schwarzschild metric. Both of these approaches yield the same result. This 
frequency is then multiplied by the gravitational red shift factor, as explained previously, to obtain the final 
result for the reference frequency onboard of the satellite expressed in terms of the distant observer observed 
satellite orbital frequency:   
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However, this procedure is typically not followed by the main stream science as one can find in the published 
literature. It is shocking to find that the gravitational red shift factor in Equation 34 is ignored. This is very 
strange, no gravity induced correction factor for the time of orbiting clocks or for the oscillator frequency is 
included. This certainly does not seem reasonable. One can only wonder why wasn't this error found earlier by 
the experts who work in this field for all their professional lives? It seems that the end justifies the means in the 
GRT and this is not a good science as has also been discovered earlier on a related case by Hynecek (2010b). 
The GRT result for the normalized spin vector frequency is thus erroneously claimed to be as follows: 

 rRstst 4/310                                    (35) 

Finally, from this result, the geodetic precession drift angle per a single orbit is then equal to: 
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This is the same formula as in Equation 22 with the only difference being that the physical radius ρ(r) is replaced 
here by the natural radius r. The results are thus not absolutely identical, but the difference is so small that it 
cannot be detected in the weak gravitational field such as the field of Earth. This formula loses its validity in 
strong gravitational fields for example in the field of Pulsars or similar compact objects that are found in the 
universe. The Schwarzschild metric exhibits a problem at the event horizon, as is well known, but this, strangely 
again, is not reflected in Equation 36. The formulas derived in the previous section, however, can easily extend 
their validity to such strong fields, because the corresponding metric does not exhibit any event horizons and 
Black Hole artifacts with singularities. The previously derived MTG formulas are thus more reasonable and 
more accurate.   

The first problem, therefore, is the Kepler's third law for circular orbits derived from the Schwarzschild metric, 
which is identical with the Kepler's third law for circular orbits derived from the standard Newtonian physics of 
flat space-time geometry. The curvature of Schwarzschild space-time is not reflected in this Kepler's third law.    

The second problem is the omission of the gravity induced frequency correction factor for the satellite onboard 
reference clocks. This factor is necessary for the spin vector frequency normalization. This omission thus seems 
to be a hidden error or even an intentional deception in calculations by the main stream establishment that must 
be there just to force an agreement between the experiment and the GRT prediction. The GP-B thus clearly 
confirms the metric of Equation 1 and the associated relativistic Kepler's third law for circular orbits and not the 
GRT metric. 
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The third problem is the theoretical nonexistence proof of gravitomagnetic force and thus the frame dragging 
effect.   

It is the author's opinion that while the GP-B experiment was very nice, thus giving its engineering very high 
marks for overcoming of many challenging problems, the results are not a very convincing proof of the 
Einstein's GRT. This is contrary to wide and enthusiastic accolades in various publications and presentations 
(NASA, 2008, 2011). 

The new MTG metric derived previously and used by the author in this paper explains the same data with the 
same or ultimately a much better accuracy when the gravitational fields become strong. The GP-B results thus 
prove the correctness of the new metric instead of the Schwarzschild metric.  

More details and a thorough explanation of the GP-B experiment can also be found in Wikipedia (2013). 

5. Generalization 

The presented derivations of geodetic precession formula can be generalized and the formula derived that is 
valid for any static, spherically symmetric, and orthogonal metric. This considerably shortens the calculations. 
The equivalent of Equation 20 is then as follows: 
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This, of course, leads immediately to the result for the new metric as derived in Equation 21: 
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and to the following result for the Schwarzschild metric: 
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From this formula the GRT result for the geodetic precession drift angle per orbit should be: 
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This clearly shows that the GP-B test results prove that the Einstein's GRT is not the correct theory of gravity.  

For the observations carried on the surface of Earth instead of by a distant observer, both frequencies ωst and ωt0 
undergo the same transformations, therefore, there is no difference in the results.  

6. Conclusions 

In this article it was clearly shown that the widely publicized claims of GP-B confirming the Einstein's GRT are 
not true. Another metric obviously exists that can be used to accurately explain the same data and it is actually 
this metric that the GP-B has confirmed. In addition to this fact the new metric does not predict the existence of 
such pathologies as the event horizons and Black Holes. This considerably adds to its credibility.  

The standard procedure used for the calculation of gyroscope geodetic precession, however, relies on the 
Schwarzschild metric of GRT, which also provides the Kepler's third law for circular orbits that is identical to 
the Kepler's third law derived from the Newtonian physics of flat space-time geometry. This fact ultimately casts 
doubts on the correctness of the derivation of standard geodetic precession angle formula and, therefore, also on 
the correctness of the Schwarzschild metric, and ultimately on the correctness of the Einstein's GRT. 

In conclusion the author would like to acknowledge the important role of internet and the internet journal 
publications such as the Applied Physics Research, which enable the unprecedented access to data and to various 
theories that are trying to explain them. This process is now significantly accelerated, with the information 
accessible to anyone who is interested. The author believes that this process will eventually lead to the 
abandonment of the old theories and their replacement with the new ones that describe the reality more correctly. 
The author also hopes that one day the nonsensical claims of Black Holes, Worm Holes, and other similar 
absurdities existence will reside only in the science fiction literature. Hopefully the theory of gravity will then 
return to a more rational state, which will be more in line with the rest of the 21st century physics and 
engineering. When will this be, who knows?      
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Appendix 

The derivation of the frequency transformation formula for the frequency of oscillator that resides on the orbiting 
satellite to the frequency observed by a distant observer is best shown by using the Lagrangian formalism with 
the Lagrangian (L = c2) describing the satellite motion as follows: 
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The first integrals of Euler Lagrange equations of motion following from the corresponding variational principle 
are: 
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where both velocities v and cϕ are the velocities along the orbit defined as: 
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More specifically, Equation A5 is for the Schwarzschild metric equal to: crRcc sSch  /1)( , and for the 
MTG metric equal to: crcrc MTG  )(/)(  . The velocity of light, as is well known and according to either 
theory, is also not isotropic in the vicinity of gravitating bodies: 

rcc  , but this effect is very small for Earth 
and can be neglected. From Equations A2 and A3 thus follows that: 

   cegcv  00
22 /1                                (A6) 
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This equation holds always exactly true for bodies in a free fall when a correct value for the light speed, found 
from the metric when ds is set to zero, is used in it. The correctness of this formula can be verified for the weak 
fields and small velocities in comparison to c by squaring it and expanding the right hand side into a power 
series. By considering only the first two terms of expansion the well known condition for the Newtonian 
conservation of energy: v2/2 = κM/ρ(r) is obtained.  

In the next step, from the first integral in Equation A3, using the inverses of corresponding times, the relation 
between the frequency observed by a distant observer and the proper frequency onboard of the satellite is 
obtained as follows:        

     cet


  2                                     (A7) 

However, there is also a Doppler effect, more precisely the transversal Doppler effect, that needs to be included:  

 
22 /1

/1

cv

cv
t


                                   (A8) 

The velocity sign dependent term in the numerator will average out over the satellite's orbit and after the 
substitution for the velocity from Equation A6 the following formula results:  

cet


                                       (A9) 

The same result without averaging out the linear term in the numerator is obtained when the distant observer is 
positioned on the axis perpendicular to the satellite's orbital plane.   

By combining the results form Equations A7 and A9 the final formula for the frequency transformation from the 
orbiting satellite proper frequency ωτ to the distant observer observed frequency ωt is:    

  cet


                                       (A10) 

This result is used in Equation 19. It is interesting to note that this formula is identical with the frequency 
transformation formula that would be obtained for an equivalent stationary oscillator or clocks positioned at the 
same potential of the gravitational field that exists at the satellite's orbit. The formula can be derived from the 
relation: dtedtgd c

tt
  , and it is the well known gravitational red shift formula: 

  cet


                                       (A11) 

While this finding is interesting it is not surprising, because the free fall, which the motion of the satellite 
represents, is equivalent to the action of gravity in a stationary reference frame. 

One last comment is necessary, however, which is related to the definition of the distant observer. The meaning 
of the distant observer is the observer that is just removed from the gravitational field, not necessarily an 
observer placed in a particular distant coordinate location.  

 


