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Abstract

To this purpose, one uses the result that quantum phenomena in the Euclidean formulation of the theory are due
to a stochastic space-time background interaction, whose essence is the time derivative of the Wiener process.
The problem of calculating both the transition probability, the path integral for the systems of four particles and
factorization solution of Fokker-Planck equation are then solved. The transition probability solution of
Fokker-Planck equation factorizes into a first component describing the system at its ground state and a second
component characterizing its transition dynamics. The path integral for these system are then solved.

Keywords: wiener process, Fokker-Planck equation, path integral, transition probability density, theorem of
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1. Introduction

Understanding the process of classical Euclidian theory is one of the major challenges in the last twenty years in
the fields of Brownian motion dynamics and quantum mechanics.

This interest can be explained by the fact that there is a close relationship between Brownian motion and
quantum mechanics (Beilinson, 1959, 1982; Beilinson & Leal, 1993; Beilinson & Massou, 1996; Feyman &
Gibs, 1965; Gelfand & Vilenkin, 1961; Glimm & Jeffe, 1987; Kac, 1959). Indeed, the solution of the
time-dependent Schrodinger equation:

ih ™ ED = Ay (x,0) (1.1)
can be obtained from the Bloch equation
% = AZ(xt) (1.2)

through analytic continuation of Z(x, t), relative to variable t, up to the imaginary axis. Formally, it means the
substitution of t by it and thus one gets the transition Z(x, it) = ¥(x, t).

It is known (Beilinson & Leal, 1993) that the strong interrelation between the Brownian motion problems and
those of the quantum mechanics allows a simplified numerical solution of concrete quantum mechanics
problems. Instead of solving numerically in a considerably simpler manner with a further time-analytical
extension of the obtained results. In the Euclidean quantum mechanics (and, therefore, also in usual quantum
mechanics), the quantum nature of the particles can be related, not with the particle itself, but with the stochastic
space-time derivative of the Wiener process, used in the right hand side of Jacobi conjugate equation in classic
Euclidean mechanics. This explains why these equations become stochastic.

In this work we study such a limit problem, when the correlation is absolute between particles. We first consider
a system of three stochastic equations
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@(1) is the Wiener process with the measure (Gelfand & Vilenkin, 1961; Glimm & Jeffe, 1987).

di() = exp{~ [; 9> (D dr} TIiz o (14)

With the functions

. — 2 2 _
S(xg,0; x,t) SShoot [(x? 4+ xg*)chw — 2xx,],
R(yo, 0;y,t) = zg‘jf;t [(? + y0*)chB — 2y 0] (1.5)
Q(20,0; z,t) = il [(z2 + zy®)chy — 2zz,]
T 2shyt

Associated to the corresponding classical Euclidean oscillators by time analytic continuation of the real axis by
imaginary one. M, m and p are the masses of oscillators; w, 8 and y their frequencies.

In Euclidean Quantum mechanics, the problem we used to tackle involves three different independent Wiener
processes ¢4, ¢, and @3 describing a system of noninteracting quantum oscillators in the form:

., 85
x+a—§01
. OR .
}’+5=(P2 (1.6)
. 90
kz+g—(l’3

At the opposite, oscillator characteristics that are described by (1.3) and (1.1), interact each to other only through
a single space-time function ¢ (7). This work aims to investigate this specific space-time nature of interaction
between quantum oscillators.

To a single Hamiltonian operator in Euclidean Quantum mechanics correspond an infinite number of stochastic
equations, involving enormous computation difficulties, like equations (1.3). In this work we propose to consider
another system of stochastic equations equivalent to the previous one and involving the same point of stochastic
space-time background for the quantum oscillators as:

x(1t) + wx(r) = ¢(1)
y(@ +By(@) = () (1.7)
z(0) +yz(1) = ¢(1)
R(7) + AR(7) = ¢ (1)
Where w, 3,y and A are frequencies of oscillators.

This article is organized as follows. In section 2, a brief description of the four particle case based on the
equations (1.7) in given to set up the transition probability, corresponding Fokker-Planck equation the path
integral and the factorization theorem involved.

2. Four Particle Case

2.1 The Transition Probability and the Fokker-Planck Equation

Let now consider a system four oscillators possessing the masses m,;, m,, m3, and my and frequencies w,f,y,1
located at the same point of the stochastic space-time background accordingly to the following system of
equations:
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X+wx=¢
y+By=¢ 2.1.1)
Ztyz=¢
R+AR=¢

and to the measure (1.4) of the Wiener process.
Using Duhamel integration method, the solutions of (8) can be settled up:

t

x(t) — xo()e @t = f [26(t — 5) — we™ @] (s)ds
0

Y(©) = yo(O)e e = [[26(¢ — ) = Be e p(s)ds (2.12)
z(t) — zy(t)e ¥t = ft[26(t —s) —ye " I]p(s)ds
0

t
R(t) — Ro(t)e ™ = f [26(t — 5) — e~ 9] p(s)ds
0
Such that the probability density of simultaneous realizations of the values

x(t) — xo()e™t , y(t) — yo(D)e P, z(t) — zo(t)e™¥* and X(t) — Ro(H)e ™™

of these functional coincides with the transition probability associated to (2.1.1) as:

W (%o, Yo, 20, R0, 0;%, Y, 2, R, 8) = [ & {( x(t) — xo(t)e ) — fot[Zé‘(t —5)— we“"(t‘s)]go(s)ds} x

5{( y(®) = yo(De ) = [;[28(t = 5) = peFEp(s)ds} x 6 {(2() - z0()e™") = [;[28(t - 5) -

(- _ t (-
ye "¢ 9p(s)ds} x & {(N(t) — Rp(t)e ™) — N [26(t —s) —2e72C S)]go(s)ds} d,,o(s) (2.1.3)
With the following initial condition
®(0)=0
Following the integration process (Beilinson & Massou, 1996; Massou & Olatunji, 2002), one can rewrite
W (X0, Yo, Zo) X0, 0; X, , 2,8, t) = exp {ﬁ} (m*B)~1/? (2.1.4)
Where
0 (x —x0e™®) (Y_YOe_Bt)(Z—Zoe_yt) (R —Rye™)
(x —x0e™®") ay aip a3 Qqq
A=|(z—zye™) Ay Ays ays 324
(y —yoe™F?) azy as; az3 a 34
(R — Rpe ™) Qg1 Qs Qa3 44

Q11 Q12 A3 Qy4
B = Az1 Gz QA3 Gy
31 A3z A3z Q3y
Ag1 A4z Q43 Qgg
With the diagonal elements obtained as:

t[ rt 2 ? RSY: 1 — g—20t
as, =J;) UT [25(t—s)—we“"(t‘s)]ds] dr = _([(1—1+e ( ‘)) dr = 0
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t[ ,t t IVERY: 1 — 2Bt
= — ) — Be—BE=9) - _ Alt=s) _
Az, fOU [26(t —s) — Be ]ds] dt {(1 l+e )df -
t t 2 t 2 1—e_2Vt
azz = 25(t —s) —ye V(=9 ds] dr=[(1-1+e7" ) dr= =" —
33 fo[fr[ ( )—vy ] T _([( ) 2
t t 2 t 2 1—e_2M
= 26(t — 5) — Ae=At=9)]q ] de=[(1-1+e ) dr=="F—
S [ N (WA P

The off diagonal elements are symmetric and involve the cross product of integrals as

t

Az = Qg = J:{U:[ZS@ —-s)— ﬁe_ﬁ(t_s)]ds

0
1— e—(w+ﬁ)t
T w+p

t
X

Ay3 = A31 = ft{Ut[ZS(t —s) —ye"¢9]ds
0 T

1— e—(w+y)t

w+y

t

t
X |:f [26(1; — S) — we—w(t—s)]ds]}d,[ — Ie—(w+ﬂ)(t—s)dr

¢
f [26(t —s) - we—w(t—s)]ds]} dr = J'e—(ww)(t—s)dz_

Ay = Ayy = ft{[ft[26(t —s)— Ae‘l(t‘s)]ds] X Ut[Zé‘(t —s) — a)e“"(t‘s)]ds]}dr = J‘e_(mﬁ)(t_s)dz'
0 T T

0
1— e—(w+/1)t

w+ A

X

Qp3 = A3y = ft{[ft[25(t —5) — Be Ft=9]ds
0 T

1 — e_(y+ﬁ)t
Y +8B

t

t t
f [26(1: —_ S) _ ye_Y(t_s)]dS:l} d‘[ — Ie_(y+ﬂ)(t_S)dT

Qup = Apy = ft{Ut[Zé‘(t —-s) — ﬁe‘ﬁ(t‘s)]ds] X Ut[Zé‘(t —5)— Ae‘ut—s)]ds]}dr = J‘e_('“/})(t_s)dz'
0 T T

0
1— e—(l+ﬁ)t
_W

t

(34 = Qu3 = ft{[ft[ZS(t —5) —ye " 9]ds
0 T

0
1—e— @+t
- A+y

From (2.1.4), after some calculations we obtain the following relations:

. X —Xp
lim
t—0

= wXx,
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t—0 t

y Z—2Z

rat I A

- 2 — 2 _ RN \2
limt—>0 (x ZCO) — limt—>0 (6% ;VO) — 11 £550 (z fo) — hmt_>0 R :0) — i

I —x)—yo) . (x—x)(z—-2) . -—y)z—2)
m————=Jlim———— =|im———— =

0 t t—0 t t-0 t
T _ | ER _ 1 @.16)
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lim
t—0 t 2

lim,_,,

So, the searched Fokker-Planck equation takes the form:

ow a a a 9 192w | 19%w | 19%w | 192w | 19%W | 19%W
e Qo OW) =By OW) =y (GW) — A (UN) = Lo+ 5e Y iz Y i T Somay T Zover
192w | 19%w | 19°W | 19?°W
20x0% | 20ydz | 28ydN | 209z0X (2.1.7)
2.2 The Path Integral
Since (2.1.4) is a function of causality, then the following relation is verified:
W (x4, 99,20.Ny,0;x, 9,2, N, 1) = I H w (xj_l,yj_l,zj_l’Nj_l,tj_l,xj,yj,zj,Nj)x
e j=l
xdx,dydz,dN,---dx, dy, dz, dN,, (2.2.1)

t
We suppose that ( X, =X, y, =Y, z, =1z, anN, tj.:j—, t, =t )
n

Using the Taylor power series expansion (Beilinson & Leal, 1993; Beilinson & Massou, 1996) and (Gelfand &
Vilenkin, 1961), we write the determinants A and B occurring in the expression (2.1.4) as:

B = bg(At)® — b, (At)7 + 0(AL)B (22.2)
With

1
be = {242+ 1-V)+( + HA - P +12(8 — w)

+3[B+w)(w+Y)A-w)-A+w)B+)Fy-w)+ A+ )y +w)(B -l
—(w+N(@+pHA-w) + (@ +1)(@+D(=F* - 0? + 20p) — 20(w + D — B)
+(@+ DB+ )y —w)}

b, :—;[—33—Bz(y+2/1)—32(,8+y+1)+5/1—3By—y—24/13+3(ﬂ+/1)3+18(ﬁ+/1)3

—24w3(B + 1)? — 2463 (w + y)? — 2473 (B + 1)?]
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A] =~ (At)3 {[x] - x]-_
+ Xj
+ Xj

+Xj

The coefficients k; (i=1,.....

— X

+yj—

+|x; -

- Xj_q (1 wAt +

— xj—l (1 wAt +
Nj—l (1 -

Using (2.2.2) and (2.2.3) in (2.1.4), we have :

w?(A)2\T?
| 1-whr+———)| xk

2 A [
( 0) Vi = Yj- 1( —ﬁAt+
2(At ) [ (
zi—zj_4|1- yAt+
Z(At)2> 'xj—x <1—/1At+
) e
AZ(At)) ka}

,6) are given in table below.

n- 1A1‘+1+Ai} _

exp { 5

42
exp{Zn 1[(2:”_1 xj)=(xj=xj_1)+wbt(xj—xj_1)-w? —(xj—x] »

At
2
[xj=xj_1+w(bt)Xj_1—w"—

2
Xj-1]

(GLY

(88)3ky

At

(At)3xks
(b6+b7At)} X exp;

n-1
x (At)4(b5+b7At)] x exp [Zi:

At?
[yj+1—y,-+B(At)yj—ﬁ27

% (At)3xkq %
(bg+b7At) exp

(3’1+1 Yi)=(vj=vj-1)+BAt(Yj~yj-1)- p2-

PO
=l
ol

y2(At)?

SR

yAt +

(2.2.3)

. . At)x i ZAtZ .
Xjy1—Xjto(AD)xj—w —Xj

At

2

yj] x j-yj-1+BA)yj_1— BZ 37] 1]

(a6)3

(y, Vj- 1)]

At

At

(a3

(be+b7At)

2
exp{ n— 1[(Z]+1 2j)—(2j-2j_1)+yAt(zj=zj_1)— v 2 (Z] “Zj- 1)] % (At)SXRS}Xexp[

ez Y (A)Z 4 — Zﬁ .
[zj—zj—1 14¢ )Z]—l Y Zj—1]

At

(8)3ky l}
X
(At)*(bg+b7AL)

. . A . ZAtZ .
Zjy1-2j+y (A0 zj~y 7] %

At

2
(At)3ke n-1 (%2 =8)=(Rj=j 1) +AAE(R =Ny )-2250 (NJ Rj-1)
X(At>4(bs+b7Ar)]} X exp { [ @n?
(At)3><k1}x
(be+b7AL)
20t2 A2
[Ri+1_xj+}“(At)Ni_A | RR AR ~APR; ] (863K,
exp At x At (At)*(bg+bsAL)
6 7
O(At)}
(2.2.4)

Passing now to the limit At — 0, we obtain:
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W (xq, Vo, 29, X, 0; X, v, 2, 8, t)

- f ff fexp{bisfcl(’”wx—wzx)z+Cz(37+ﬁ5/—ﬁ2y)2+cg(2+VZ'—VZZ)2

cx cy cz CR

+ (R + AR — AZN)ZdT}5[(5c + wx) — (¥ + BY)] X §[(x + wx) — (z + y2z)] X §[(x + wx)

—(R+AR)] x 8[(Y + BY) — (2 +y2)] X 8[(¥ + By) — (R + AR)] x 8[(2 + y2)

t

: dx(7)dy(v)dz(r)dX
— (R +2R)] x 1_[ z lej]l/‘gnzz(d:-)s 2

x(0) =xp ;¥(0) =y 2(0) = zp; R(0) =X
x@®)=x; yO)=y ;zt)=z; R(@t) =X
The k;’s values.
Table
k=0-NA-HDA-PH-A-Pl1 -G+
ko =0-y)A-D[1-(0+P)
ks =[1-(0+D][1-F+MHIL-EB+D]
ki=1-0)A-DH[1-@B+1]?
ks=(1-w)[1-(B+DI1-F+D]
ke =[1- (0 + VI - (0 + DI

We have for the normalization condition probability transition:

n

lj(n“B) - r {n4b6(At)6 [1 _ Z—ZAt] + O(At)s} -

j=1
byt
) b 52
b 7 b
*(At)°be [}, {{1—#%}} ] eexp(—b—:)t
if At >0

Finally, the fundamental solution of (2.1.7) writes:

(2.2.5)

1 ,t . . . .
W(xOIyOIZO! N0! 0: X, Z, N) t) = fCX fcy fCZ f Cx exp {Zfo Cl(x + wx — wzx)z + Cz(y + ﬁy - ﬁZY)Z +

cs(Z+yz—y%2)? +c,(R+ AR — AZN)ZdT} exp (—Z—:t) S[(xX + wx) — (¥ + BY)] X 6[(% + wx) — (z +

y2)] X §[(% + wx) — (R + AR)] X 8[(y + By) — (z + y2)] X S[(¥ + By) — (R + AR)] x 8[(z + yz) —

. dx(t)dy(t)dz(t)dR(T)
(R + AR)] X MTem0 =77z 0amy7

x(0) =x, ;y(0) =y, 2(0) = zy; R(0) =X,
x®)=x; y)=y ;z(t) =z ; R(@t) =R

2.3 The Theorem of Factorization
The probability transition (2.2.6) can be rearranged and factorized as:
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Z(x,y.2,8)

W(XO,yO,ZO, Ro, 0;x,v,2,R, t) = m

Z(X0, Y0, 20, R0, 0; X, ¥, 2,8, ) (2.3.1)
with,

5 -1
Z(x,y,2,8) = exp {b— [k1w3x? + ko B2y? + kay®z* + k4/13x2]}
6

Z(x0,Yo» Zo) Ro) = exp {_biﬁ [kiw3x3 + kyB3y3 + kyy3z2 + k41383]}
and
Z(x0, Y0, 20,80, 0;x,y, 2,8, t) = [ fcy Joo exp{ [(x + wx)? — 2w%xi + w*x? + (§ + By)? —
2B%yy + Bry? + (Z +y2)? = 2y%zz + y*z? + (R + AR)Z — 2A2RK + A“NZ]}dT exp (—%:t) S[(x + wx) —
7 + BY)] X 8[(x + wx) — (Z +y2)] X 8[( + wx) — (R + AR)] x 8[(y + By) — (Z +y2)] x §[(y + By) —

dx(t)dy(t)dz(t)dR(T)
|be|*/2m2(dT)3

(R+AR)] x 8[(z +v2) — (& + AR)]| x [Tt (23.2)

x(0) =xp ;¥(0) =y 2(0) = zp; R(0) =X
x@®)=x; yO)=y ;z)=z; R(@) =X

The integrals on (2.3.2) are calculated with respect to all the continuous paths with fixed extremities.
Substituting relation (2.3.1) in the Fokker-Plank equation (2.1.7), one can easily show that z is the solution so the
Bloch equation

0z s
=HZ ; HZ=0
ot
With H given by the expression:
~ 1[92 92 19 19 19
H=1 [ﬁ axz] +3 axay 29x0z ' 20x0% | 20y0z + 2 9yox + Eazax +C(ax + By +1nz+

/11&)— + C, (ayx + By + v,z + /12&)— + C3(azx + By + ysz + 13?{) + Colagx + Buy +Vaz +

LX) 2+ Clw'x? + CiB*y? + Chy*z? + CLAN? (2.3.3)

The coefficients C;; a;; Bi; vi; Adiyi = 1,4 occurring in (2.3.3) are given as follows.
Equivalently, Z is the solution of the corresponding time-reversed Bloch equation:
07 —
="
The specific interaction of quantum particles considered here, which takes place whenever particles stay close
enough to one another for a sufficiently long time interval (a realization of such situation probably being

particles confined into an atomic nucleus), can be illustrated by the interaction between four quantum oscillators
with a potential energy
1

1 1 11 11 1
V== 2,2 T R24,2 .22 —JZNZ——J,
R LR VS A T Y 2

(my=my=my=m, =h=1)

Conversely, in the usual quantum theory, these oscillators, in general, do not interact.

Under the conditions assumed in this work, an interaction arises between the oscillators that are due to the
stochastic space-time background. In this way, x,y,z, X are not to be considered as normal coordinates, thus
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leading to a shifting of their normal frequencies.

3. Conclusion

The quantum problem of three and four particles in a small region of dimension comparable to that of an existing
background interaction is considered.

Using the theorem of the factorization of the solution of the Fokker-Planck equation, we obtained the Hamilton’s
operator H who cancels a function of state stationary Z(x, y, z, X).

The first component of the solution of Fokker-Planck equation describing the system at its ground state and a
second component characterizing its transition dynamics.
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