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Abstract 

In this work, the spin-averaged mass spectra of heavy quarkonia (ܿܿҧ and ܾ തܾ) in a Coulomb plus quadratic 
potential is studied within the framework of nonrelativistic Schrodinger equation. The energy eigenvalues and 
eigenfunctions are obtained in compact forms for any ݈-value using Nikiforov-Uvarov method. The obtained 
results are used to produce potential parameters (ܽ, ܾ, and ߜ) for the charmonium and bottomonium systems, 
from which then their full mass spectra are determined. The obtained values are compared with the available 
experimental results. The predictions from our model are found to be in good agreement with the experimental 
results. As a side result, the Hydrogen atom known spectrum is recovered. 

Keywords: heavy quarkonium, mass spectra, Nikiforov-Uvarov 

1. Introduction 

Since their discoveries, investigation of heavy quarkonium systems (ܿܿ, ܾܾ, ܾܿ, ܾܿҧ) provides us with a crucial 
role for quantitative tests of QCD and the standard model. For detailed review of heavy quarkonium physics 
recent progress, see e.g. (Brambilla & Vario, 2007; Brambilla et al., 2005; Zalewski, 1998) and the references 
therein. Because of the heavy masses of the constituent quarks (݉  Λொ, i.e. than about 200 MeV, where 
Λொ is the hadronization scale), many features of these systems can be studied within the framework of 
nonrelativistic Schrodinger equation, where one assumes that the quark-antiquark strong interaction is described 
by a phenomenological potential. There are many potential models that are commonly used to study heavy 
quarkonium spectra; for instance, Martin, logarithmic, and Cornell potentials (Al-Jamel, 2011; Patel & 
Vinodkumar, 2009; Rai, Patel, & Vinodkumar, 2008; Reyes, Rigol, & Soneira, 2003; Zalewski, 1998). Any of 
these potential should take into account the two distinctive features of the strong interaction, namely, asymptotic 
freedom and confinement. A successful potential model for such systems is the one that produces its mass 
spectra in agreeing with the experimental data within about 20 MeV and leptonic decay widths within a factor of 
two (Bhanot & Rudaz, 1978). 

The main obstacle in such studies arises due to the abscence of the exact solutions of Schrödinger equation for 

such systems, particulalry when the centrifugal potential 
మሺାଵሻ

ଶఓమ  is included. For ݈ ് 0, there are some 

approximation techniques, analytical and numerical, were developed, such as supersymmetry (Morales, 2004), 
1/ܰ  expansion (Bag, Panja, & Dutt, 1992), Pekeris approximation (Pekeris, 1934), variational methods 
(Montgomery, 2001, 2011), and asymptotic iteration methods (Ciftci, Hall, & Saad, 2009). 

In the present paper, we consider the mass spectra of heavy quarkonium systems in a Coulomb plus quardatic 
potential using Nikiforov-Uvarov method. In section 2, we review the main formalism of the conventional 
Nikiforov-Uvarov (NU) method used in our analysis. In section 3, we present our main problem and its analytic 
solution. In section 4, results and discussion are given. In the last section, summary and conclusions are 
presented.  

2. Nikiforov-Uvarov Method 

The Nikiforov-Uvarov method (hereafter, NU) is a method that provides us an exact solution of nonെrelativistic 
Schrödinger equation, or Schrödinger-like equation, for certain shape of potentials. It is based on the solutions of 
general second order linear differential equation with special orthogonal functions (Nikiforov & Uvarov, 1988; 
Szego, 1975). With an appropriate ݏ ൌ  ሻ coordinate transformation, the Schrödinger equation in oneݔሺݏ
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dimension for certain potentials is reduced to a generalized equation of hypergeometric type of the form  

                      ߰ᇱᇱሺݏሻ 
ఛሺ௦ሻ

ఙሺ௦ሻ
߰ᇱሺݏሻ 

ఙሺ௦ሻ

ఙమሺ௦ሻ
߰ሺݏሻ ൌ 0                         (1) 

where ߪሺݏሻ and σሺݏሻ are polynomials, at most secondെdegree, and τሺݏሻ is a firstെdegree polynomial. For a 
careful derivation of Eq(1), one can refer to (Nikiforov & Uvarov, 1988). To find the particular solution of 
Eq.(1), we use the following transformation  

 ߰ሺݏሻ ൌ ߶ሺݏሻݕሺݏሻ,                                 (2) 

which reduces Eq.(1) to an equation of hypergeometric type,  

′′ݕሻݏሺߪ   ߬ሺݏሻݕ′  ݕߣ ൌ 0,                             (3) 

where ߶ሺݏሻ satisfies  

 ߶ᇱሺݏሻ/߶ሺݏሻ ൌ  ሻ,                             (4)ݏሺߪ/ሻݏሺߨ

and ݕሺݏሻ is the hypergeometric type function whose polynomial solutions satisfies the Rodrigues relation  

ሻݏሺݕ  ൌ


ఘሺ௦ሻ

ௗ

ௗ௦ ሾߪሺݏሻߩሺݏሻሿ.                            (5) 

In the above equation, ܤ is the normalization constant and ߩ is called the weight function and must satisfy the 
condition  

 ሺߩߪሻ′ ൌ  (6)                                  .ߩ߬

The function ߨ and the parameterߣ required for this method are defined as 

ߨ  ൌ
ఙ′ିத

ଶ
േ ටቀ

ఙ′ିத

ଶ
ቁ

ଶ
െ σ   (7)                          ߪ݇

and   

ߣ  ൌ ݇  ߨ ′.                                  (8) 

Here, ߨሺݏሻ is a polynomial with the parameter ݏ and the determination of ݇ is crucial in the calculation of 
 ሻ. To determine the value of ݇, the expression under the square root in Eq.(7) must be square of aݏሺߨ
polynomial. Hence, the follwoing new eigenvalue equation for the Schrödinger equation will be established 

ߣ  ൌ ߣ ൌ െ݊߬ ′ െ
ሺିଵሻ

ଶ
ߪ ′′, ሺ݊ ൌ 0,1,2, . . . ሻ                    (9) 

where  

 ߬ሺݏሻ ൌ τሺݏሻ   ሻ,                             (10)ݏሺߨ2

and it will have a negative derivative. By equating Eq.(8) with Eq.(9), we obtain the energy eigenvalues.  

3. Formulation of the Problem And Its Analytic Solutions 

As a phenomenological model for a heavy quarkonium system (ݍݍത), we consider the following spin-averaged 
potential  

 ܸሺݎሻ ൌ െ



  ଶ,                              (11)ݎܾ

where ܽ and ܾ are non-negative constants and ݎ is the interquark distance. This potential has two parts: The 
first is െܽ/ݎ, which corresponds to the potential induced by one-gluon exchange between the quark and its 
anti-quark that dominated at short distances, while the second part ܾݎଶ accounts for quark confinement at large 
distances. The nonrelativistic radial Schrödinger equation for this system is  

 
ିଵ

ଶఓమ

ௗ

ௗ
ቀݎଶ ௗோሺሻ

ௗ
ቁ  ቀܸሺݎሻ 

ሺାଵሻ

ଶమ ቁ ܴሺݎሻ ൌ  ሻ, (12)ݎሺܴܧ

subject to the boundary condition ܴሺ∞ሻ ൌ 0 . Using ݑሺݎሻ ൌ ሻݎሺܴݎ , the radial Schrödinger equation is 
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transformed to  

 
ௗమ௨ሺሻ

ௗమ  ߤ2 ቀܧ 



െ ଶݎܾ െ

ሺାଵሻ

ଶమ ቁ ሻݎሺݑ ൌ 0. (13) 

Making the change of variable ݔ ൌ  :this equation then becomes ,ݎ/1

 
ௗమ௨ሺ௫ሻ

ௗ௫మ 
ଶ௫

௫మ

ௗ௨ሺ௫ሻ

ௗ௫


ଶఓ

௫ర ቀܧ  ݔܽ െ


௫మ െ
ఊ

ଶ
ଶቁݔ ሻݔሺݑ ൌ 0. (14) 

where ߛ ൌ ݈ሺ݈  1ሻ. Next,we propose the following approximation scheme on the term 


௫మ. Let us assume that 

there is a characteristic radius ݎ of the meson. Then the scheme is based on the expansion of 


௫మ in a power 

series around ݎ, i.e. around ߜ ؠ
ଵ

బ
, in the ݔ-space, up to the second order, so that the ܾ െdependent term, 

preserves the original form of Eq.(14) as if the term 


௫మ were not exist. This is similar to Pekeris approximation, 

which helps to deform the centrifugal potential such that the modified potential can be solved by NU method. 
Setting ݕ ൌ ሺݔ െ ݕ ሻ and aroundߜ ൌ 0 it can be expanded into a series of powers as  

ܾ
ଶݔ ൌ

ܾ
ሺߜ  ሻଶݕ ൎ

ܾ
ଶߜ ሺ1 െ 2

ݕ
ߜ

 3
ଶݕ

 ଶሻߜ

ൌ


ఋర ሺ6ߜଶ െ ݔߜ8   ଶሻ.                              (15)ݔ3

Note that, within this approximation, an extra model parameter is introduced, viz., ߜ. It should be mentioned 
that the choice ܾ ൌ 0 eliminates ߜ from the calculations, and the effect of the confining quadratic potential 
dissappears and then we recover the free Coulombic field problems. Substituting this into the radial Schrödinger 
equation, we obtain  

 
ௗమ௨ሺ௫ሻ

ௗ௫మ 
ଶ௫

௫మ

ௗ௨ሺ௫ሻ

ௗ௫


ଶ

௫ర ሺെܣ  ݔܤ െ ሻݔሺݑଶሻݔܥ ൌ 0,                      (16) 

where ܣ ൌ ܧሺെߤ 


ఋమሻ, ܤ ൌ ሺܽߤ 
଼

ఋయሻ and ܥ ൌ ሺߤ
ఊ

ଶ


ଷ

ఋరሻ. By comparing this last equation with Eq.(1) we 

have τ ൌ ߪ ,ݔ2 ൌ ଶ, σݔ ൌ 2ሺെܣ  ݔܤ െ   ଶሻ, and so we can apply the NU method. Thereforeݔܥ

ߨ  ൌ േඥሺ݇  ଶݔሻܥ2 െ ݔܤ2   (17)                            .ܣ2

The constant ݇ is chosen such as the function under the square root has a double zero, i.e. its discrimenant 
Δ ൌ ଶܤ4 െ ሺ݇ܣ8  ሻܥ2 ൌ 0. Therefore,  

ߨ  ൌ േ
ଵ

√ଶ
ሺ2ܣ െ  ሻ.                               (18)ݔܤ

Thus,  

 ߬ ൌ ݔ2 േ
ଶ

√ଶ
ሺ2ܣ െ  ሻ.                              (19)ݔܤ

For bound state solutions, we choose the positive sign in the above equation so that the derivative  

 ߬ ′ ൌ 2 െ
ଶ

√ଶ
                                   (20) 

can have negative values depending on the values of parameters ܣ and ܤ, which in turn depend on the potential 
parameters ܽ, ܾ and ߜ. Therefore, from Eq.(20), and the definitions of ܣ and ܤ, we have  

ܧ  ൏


ఋమ 
ܤ  ݀݊ܽ     (21)                             ,ܣ2√

which sets a lower limit on the mean radius reciprocal ߜ for a given energy value and the constants ܽ and ܾ. 
Using Eq.(8), then we have  
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ߣ  ൌ
మ

ଶ
െ ܥ2 െ



√ଶ
.                                  (22) 

On the other hand, from Eq.(9)  

ߣ  ൌ െ݊ሺ2 െ
ଶ

ଶ√
ሻ െ ݊ሺ݊ െ 1ሻ                           (23) 

Comparing Eq.(8) and Eq.(9), one gets ܣ, from which one can then obtain the energy eigenvalues as  

ܧ  ൌ


ఋమ െ
ଶఓሺା

ఴ್
ഃయሻమ

ሾሺଶାଵሻേටଵାସሺାଵሻା
మరഋ್

ഃర ሿమ
.                         (24) 

The eigenfunctions in this approximation scheme can then be determined as discussed in section 2. Using Eq.(4), 
one obtains:  

 ߶ሺݔሻ ൌ ݔ
ି

ಳ
√మಲ݁

ష√మಲ
ೣ                                 (25) 

and from Eq.(6) we obtain the weight function  

ሻݔሺߩ  ൌ ݔ
ି

మಳ
√మಲ݁

షమ√మಲ
ೣ                                 (26) 

Thus,  

ሻݔሺݕ  ൌ ݔܤ
మಳ

√మಲ݁
మ√మಲ

ೣ
ௗ

ௗ௫ ൬ݔଶݔ
ି

మಳ
√మಲ݁

షమ√మಲ
ೣ ൰                       (27) 

The corresponding ݑሺݔሻ wave functions are then found to be  

ሻݔሺݑ  ൌ ܰݔ
ಳ

√మಲ݁
√మಲ

ೣ
ௗ

ௗ௫ ൬ݔଶݔ
ି

మಳ
√మಲ݁

షమ√మಲ
ೣ ൰                        (28) 

where ܰ is the normalization constant determined by arguing that   
ஶ

 ݎሻ|ଶ݀ݎሺݑ| ൌ 1. By setting ݔ ൌ  ,ݎ/1
and using that ܴሺݎሻ ൌ

௨ሺሻ


,then we obtain 

 ܴሺݎሻ ൌ ܰݎ
ି

ಳ
√మಲ

ିଵ
݁√ଶሺെݎଶ ௗ

ௗ
ሻሺݎ

ିଶା
మಳ

√మಲ݁ିଶ√ଶሻ.                 (29) 

4. Results and Discussion 
In this section, we use the obtained energy eigenvalue formula to study the mass spectra of heavy quarkonia. To 
be specific, we consider the charmonium (ܿܿҧ) and bottomonium (ܾ തܾ). Before we proceed our analysis, and as a 
side result, we use our results to recover the Coulomic field problem, for instance the H-atom known spectrum. 
As clear from Eq. (24), the energy ܧ depends on the potential parameters ܽ and ܾ,  Its formula .ߜ ݀݊ܽ
contains two choices in the denominator, േ. The true choice can be fixed by retreiving the free hydrogen-atom 
energy spectrum, which can be done by setting ܾ ൌ 0, and ܽ ൌ 1. In this case, the known H-atom spectrum and 
wavefunctions are recovered by interpreting the integer ݊ሺൌ 0,1,2, . . . ሻ that appears in our calculations above as 
not the principal quantum number, ݊ ൌ 1,2,3, . . ., for the hydrogenic problem, but rather through the relation  

 ݊ ൌ ݊  ݈  1.                                   (30) 

In this case, using Eq. (8-44) of (Gasiorowicz 2003), one can see that positive sign in the denominator of Eq.(24) 
should be chosen. Thus, the H-atom spectrum in Hartree units is:  

ܧ  ൌ െ
ଵ

ଶሺାାଵሻమ,                                (31) 

which is in agreement with the free H atom spectrum known in literatures. 
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Table 1. The spin-averaged mass spectrum for ܿܿҧ (in GeV) with ܽ ൌ 3.171, ܾ ൌ 0.095, ߜ ݀݊ܽ ൌ 0.6. The 
experimental data are taken from (Nakamura et al., 2010). 

State  Present  Experiment 

1S   3.096   3.096  

1P   3.433   -  

2S   3.686   3.686  

1D   3.767   3.770  

2P   3.910   -  

3S   3.984   4.040  

4S   4.150   4.263  

  

Table 2. The spin-averaged mass spectrum for ܾ തܾ (in GeV) with ܽ ൌ 1.697, ܾ ൌ 0.384, and ߜ ൌ 1.3. The 
experimental data are taken from (Nakamura et al., 2010) 

State  Present  Experiment  

1S   9.460   9.460  

1P   9.840   9.900  

2S   10.023   10.023  

1D   10.140   10.161  

2P   10.160   10.260  

3S   10.280   10.355  

4S   10.420   10.580  

 

We next examine the possibility of producing the mass spectra using  

തሻݍݍሺܯ  ൌ 2݉   (32)                                 ܧ

where ܧ is given by Eq. (24). Using ݉ ൌ and ݉ ܸ݁ܩ1.488 ൌ  and from the experimental 1ܵ state ܸ݁ܩ4.686
mass values ܯҧሺ1ܵሻ ൌ തሺ1ܵሻܯ and ܸ݁ܩ3.096 ൌ  ,ܾ ,ܽ one can determine the potential parameters ܸ݁ܩ9.460
and ߜ. Then, the rest of the mass spectra are determined using Eq.(32). The results are shown in Tables 1 and 2. 
The obtained spin-avergaed mass values are found to differ by no more than 1.5% for charmonium and by 
1.3% for bottomonium in comparison with the expermintal data except for the 4S charmonium state. As a 
nonrelativistic model, this agreement with the experimental results is fair. It should be mentioned that fine and 
hyperfine structure of heavy quarkonium mass spectra where the spin plays a major role can be taken into 
account if we use relativisitic corrections and the approperiate relativistic Schrodinger equation. 

5. Conclusions 
In this work, the spin-averaged mass spectra of heavy quarkonia ሺܿܿҧ and ܾ തܾ) in a Coulomb plus quadratic 
potential were studied within the framework of nonrelativistic Schrodinger equation. The energy eigenvalues and 
eigenfunctions were obtained analytically for any ݈-value using Nikiforov-Uvarov method. Using the available 
experimental data, the obtained energy formula were used fit charmonium and bottomonium mass spectra from 
which then the potential parameters (ܽ, ܾ, and ߜ) were determined. These parameters were then used to 
reproduce the mass spectra, which then were compared with the experimental results. The predictions from our 
model are found to be in good agreement with the experimental results. As a side result, the Hydrogen atom 
known spectrum is recovered. 
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