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Abstract 

The paper is concerned with analysis of the singular solutions in spherically symmetric static gravitation problem 
of the General Theory of Relativity. Classical results obtained for external space and for the incompressible 
liquid sphere are discussed and generalized for the cases of compressible liquid and elastic solid spheres studied 
by numerical methods. 
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1. Governing Equations 

Consider a General Theory of Relativity (GTR) problem for a solid spherical body with density )(r  and 
external radius R surrounded by an infinite empty space (Figure 1) with 0  (Synge, 1960). The line element 
of the inside and outside semi-Riemannian spaces induced by the body gravitational field can be written as 

2222222 )sin( hdtddrgdrds                          (1) 
in which )(rg  and )(rh  are the coefficients of  the metric tensor which do not depend on time t . The 
components of the energy tensor for the static problem are (for the problem under study the mixed components 
which coincide with the corresponding physical components are used) 
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3
2
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4 cT                            (2) 

Here, r  and   are the radial and the circumferential stresses induced in the body by the gravitation field. 
The energy tensor, j

iT , must satisfy the following conservation equation (Synge, 1960): 
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in which (...) (...) /d dr  . According to the basic idea of GTR, Eq.(3) is satisfied identically if the energy tensor 
is expressed in terms of the Einstein tensor j

iG  as 
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in which                             

4/8 c                                   (7) 

and   is the gravitation constant. Because substitution of Eqs. (4)-(6) in Eq. (3) satisfies this equation 
identically, only three of four Eqs.(3)-(6) are mutually independent. Traditionally (Synge, 1960), the simplest set 
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of equations including Eqs. (3), (4) and (6) is used to solve particular problems. The remaining equation, Eq. (5), 
is satisfied identically or specifies 2

2G  if 1
1G  and 4

4G  in Eqs. (4) and (6) has been found. Using Eqs. (2), we can 
transform Eqs. (3), (4) and (6) to the following form:    

22
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h
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The boundary conditions  

)0()0(  rrr  , 0)(  Rrr                         (11) 

should be supplemented with the regularity condition at the origin 0r  and the compatibility condition of the 
metric tensor for the internal and the external space at Rr   . 

Three equations in Eqs. (8)-(10) include four unknown functions, i.e., two components of the metric tensor g
and h , and two stresses r  and  . Thus, the classical set of GTR equations, in the general case, is not 
complete. 

2. Solution for the External Space 

Solution for the external space Rr   was found, as known, by K.Schwarzschild in 1916. For the empty space, 
0  and 0  r . Then, Eq.(8) is satisfied identically and the remaining equations, Eqs. (9) and (10), 

can be reduced to 
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and include two unknown functions 
eh  and eg . Subscript “e” specifies the external field. Integration of the 

second equation in Eqs.(12) yields                                  

rC
ge /1

1

1
                                     (13) 

Here, 1C  is the constant of integration which can be found from the compatibility condition using the solution 
for the internal field. Having found eg , we can determine 

eh  from the fist equation in Eqs.(12) and get 

1
2 1e

C
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r
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                                   (14) 

in which 
2C is the integration constant. Because ( ) 1eh r   , we have 

2 1C  . 

3. Solution of the Internal Problem for the Liquid Sphere 

Consider the internal problem for which Rr  . Presume that the matter of the spherical body is the perfect 
liquid for which 

)(rpr                                     (15) 

and p is the pressure. Thus, we have three equations, Eqs. (8)-(10), for three unknown functions g , h and p, and 
the governing set of equations is complete, if the dependence )( p  is known. For the stresses in Eqs.(14), the 
governing equations, Eqs. (8) and (9), reduce to 
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in which subscript “i“ corresponds to the internal space.  The boundary condition in Eqs.(11) is 
0)(  Rrp                                     (17) 

3.1 Incompressible Liquid 

Presume that the liquid density does not depend on pressure, i.e., that 
0  (line 1 in Figure 1). This problem 

has been also solved by K. Schwarzschild. For 
0  , the solution of Eq. (10) satisfying the regularity 

condition at 0r  has the following form: 
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Substituting Eq. (18) in the second equation of Eqs.(16), we get 
2

0
2 2
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To determine constant 
1C  entering Eqs.(13) and (14) for the metric coefficients of the external field, we must 

apply the compatibility condition according to which )()( RgRg ie  . As a result, Eqs. (13) and (18) can be 
reduced to 

rr
g

g
e /1

1
0

                                   (20) 
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in which 32
0

0 )3/( Rcrg  . Introducing the classical mass of the spherical body as 
0

3
0 )3/4( Rm   and using 

Eq. (7), we arrive at 

2
0

0 /2 cmrg                                   (22) 

Thus, 0
1 gC r   in Eqs.(13) and (14). 

Equation (22) specifies the so-called gravitational radius. Singular GTR solutions are expected if the external 
radius R of the sphere with mass m0 becomes equal to the gravitational radius, as follows from Eqs. (20) and 
(21). Consider possible singularities. 

As follows from Eq. (20), the metric coefficient of the external space can be singular if 0
grr  . However, 

applying the obvious condition 0ig  to Eq. (21), we arrive at the following inequality: 
203 rrR g  

which is valid for any r . Taking Rr  , we get 0
grR  . So, the surface with the gravitation radius is located 

inside the body, whereas Eq.(20) is valid outside the body. Thus, no singularity can exist in the external field.  

For the internal field, the metric coefficient specified by Eq.(21) becomes infinitely high if 0
grR   and Rr  , 

i.e., on the surface of the sphere with radius 0
gr .  

To proceed, determine the pressure p  in the liquid. Substituting Eqs. (19) and (21) in the first equation of Eqs. 
(16), we arrive at the following equation for p : 
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The solution of this equation is 
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Here, 3C  is the integration constant. It can be found from the boundary condition in Eq. (17) which yields  

0
3 (1 /gC r R   

Then, Eq. (24) takes the following final form (Synge, 1960):                                             
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in which 
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Note that Eq. (25) is not valid if the external radius R is equal to the gravitational radius 0
gr . Indeed, taking 

r R in Eq. (24), we arrive at 

0
32
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3
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If 0
gR r , we get 2

0( ) / 3p R c   and the boundary condition in Eq. (17) cannot be satisfied. Moreover, the 
obtained result for the pressure has no physical meaning, because positive pressure requires negative density. 
Thus, the solution of GTR boundary problem does not exist for the liquid sphere whose radius is equal to the 
gravitational radius. Hence, Eq. (21) has no singularity at r R , and we can conclude that the metric 
coefficients in Eqs.(20) and (21) cannot be singular.  

Consider the possible singularity of the field variable p . As known (Misner et al., 1973) the pressure
_

p  
specified by Eq. (25) can become infinitely high at the sphere center. Taking 0

_

r  in Eq. (25), we get 
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The denominator of this expression can become zero at 0 8 / 9gr  . Figure 2 shows the dependences of the 
normalized pressure p on r for two 0

gr values (solid lines). As can be seen, the pressure at the sphere center 
dramatically increases while 0

gr approaches 8/9, i.e., while the sphere radius R  reduces to 1.125 0
gr .  

Now a natural question arises as to what happens if 8 / 9r  . Find the radius 
sr r  

at which the denominator of 
Eq. (25) becomes zero, i.e., the pressure becomes infinitely high. The result is (Weinberg, 1972) 

_
09 8 /s gr r                                    (27) 

For 0
gr 9/8 , we get 0sr  , whereas for 0

gr 9/8 , Eq. (27) gives 0sr  , and the pressure singularity appears at 
the points which do not coincide with the sphere center. For the radial coordinates which are less than 

sr , the 
normalized pressure p  becomes negative which means that either pressure or density are negative. So, GTR 
equations do not give a feasible solution for the points with the radial coordinate 

sr r .  

Thus, we can conclude that the pressure in the incompressible liquid sphere becomes singular at the sphere 
center if the sphere radius R reaches 01.125 gr . If R is less than 01.125 gr , the solution does not exist. 

3.2 Compressible Liquid 

First, we derive the equation which is valid for an arbitrary density of the sphere material. For any function 
)(r , generalize Eq.(22) for the gravitational radius as 

2/2 cmrg                                      (28) 

in which the sphere mass is 


R

drrrm
0

2)(4                                  (29) 

Substituting   from Eq. (10) in Eq. (29), calculating the integral in Eq. (29) and taking into account Eq. (7) for 
constant   and Eq. (28) for gr , we arrive at the following general relation: 

1 1/g
g R

r
r g

R
                                    (30) 

where )(RggR  . Determining the constant in Eq.(13) from the compatibility condition 
Re gRg )(  and using 

Eq. (30), we get for the external field 
1

1 /e
g

g
r r




                                    (31) 

Note that Eqs. (30) and (31) are valid irrespective of the nature of the sphere matter. 

Return to the liquid sphere and consider the liquid whose density depends on pressure. For the simplest linear 
law (line 2 in Figure 1) we have 

kp                                      (32) 
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in which k  is some constant coefficient. For the density specified by Eq. (31), the first equation of Eqs. (16) 
becomes 

2(1 ) 0
2

h
p kc p

h


     

Integration yields 

)1(
2

1

3

2kc
hCp


                                   (33) 

in which 3C  is the integration constant. Because h  is not zero at Rr  , the boundary condition in Eq. (17) 
yields 03 C  and 0p  inside the sphere. Thus, GTR equations do not allow us to obtain the solution for the 
liquid with density specified by Eq. (32). This result was first obtained by J. R. Oppenheimer and G. M. Volkoff 
(1939). 

Generalize Eq. (32) as (see line 3 in Figure 1) 
)1(0 kp                                   (34) 

For the density in Eq. (34), the first equation of Eq. (16) becomes 

2 2
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2
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h
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h
 
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The solution of this equation which satisfies the boundary condition in Eq. (17) is 
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hk

 
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in which 2
0k k c , 2

0/p p c  and ( )R ih h R . As can be seen, the pressure becomes infinitely high at the 
point where ( ) 0ih r  . 

To study the liquid sphere with the density specified by Eq. (34), apply Eq. (10) for the metric coefficient and 
Eq. (35) for the pressure. First, substitute  from Eq. (34) in Eq. (10) and use Eqs. (22) and (26) to get 

2 0 2[1 3 (1 )] 0i i i grg g g r r kp                                  (37) 

To derive the second equation, substitute ih from Eq. (19) in Eq. (35). Taking into account Eqs. (7), (22) and 
(26), we arrive at 

0 21
(3 1)[1 (1 ) ] 0

2 g i ir p r r g p g k p                                (38) 

Here and in Eq. (37), (...) (...) /d dr  . The boundary conditions are 
( 1) 0p r   , ( 0) 1ig r                                  (39) 

Because the set of nonlinear equations, Eqs. (37) and (38) can hardly be solved analytically, apply the finite 
difference numerical method and use MAPLE-7 for calculation.  

It should be taken into account that parameter 0
gr  entering Eqs. (37) and (38) and specified by Eq. (22) is not 

the gravitational radius for the sphere with variable density. To solve Eqs. (37) and (38 ), we preset some 0
gr  

value and integrate these equations with the boundary conditions in Eqs. (39). The result of integration allows us 
to find ( )R ig g r R   and to use Eq. (30) to determine the corresponding gravitational radius gr . 

Numerical solution for the liquid sphere with variable density has been obtained by Misner et al. (1973) with the 
aid of the shooting method in which the pressure at the sphere center has been taken arbitrary and integration is 
performed up to the radius at which the pressure becomes zero (this radius has been identified with the external 
radius of the sphere). This method cannot be applied to the problem under consideration, i.e., to study the 
pressure which can be infinitely high at the sphere center. It should be also noted that numerical method can 
hardly be used to obtain the singular solution. To identify such solutions, Eqs. (37) and (38) have been solved for 
the incompressible liquid for which the analytical solution exists. Circles in Figure 2 correspond to numerical 
integration and are in good agreement with the exact analytical solution (lines). For 0

gr 9/8 , for which the 
analytically found pressure at the sphere center becomes infinitely high, the loss of convergence of the numerical 
procedure has been observed. Thus, the parameter 0

gr  for which numerical integration of Eqs. (37) and (38) 
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does not converge has been identified as the maximum possible parameter and the corresponding value of the 
gravitational radius gr  is found from Eq. (30). 

The results of calculation for 0
gr 0.5  and two k values ( 0k   and 1k  ) are presented in Figures 3 and 4 

showing the dependences of the normalized pressure and the metric coefficient on the radial coordinate for the 
incompressible ( 0k  ) and compressible ( 1k  ) liquids. The dependences of the maximum values of 0

gr  and 

gr  (beyond which the integration process does not converge) on parameter k  are shown in Figure 5. As can 
be seen, the dependence of the density on pressure in accordance with Eq. (34) reduces the normalized 
gravitational radius. It is important to mention that gr is the ratio of gr  to the sphere radius R. So, the 
reduction of gr  means that for the compressible liquid, the pressure becomes singular at the sphere center 
( 0)sr   if the sphere radius R is considerably higher than the gravitational radius, e.g., for 10k   we get 

0,21gr   and 4.76 gR r .  

4. Solution of the Internal Problem for the Elastic Sphere 

Consider the elastic sphere and introduce infinitely small strains r  and   in the radial and circumferential 
directions linked with the corresponding stresses by Hooke’s law (Wang, 1953), i.e., 

 


 


 rr G
GG

)(
)32(

1 ,  1
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2 (2 3 ) rG
G G    


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
             (40) 

Here 

)1(2 


E
G  , 

)21)(1( 





E                       (41) 

in which E is the Young’s modulus and   is the Poisson’s ratio. For small strains, the radial and the 
circumferential  metric coefficients can be presented as 

2(1 ) (1 2 )i i r i rg g g      , )1(   rr                  (42) 

in which index “ “ corresponds to the deformed space. 

As noted in Section 1, the GTR equations, Eqs. (8)-(10), do not allow us to solve the problem, because they 
include the stresses r  and   which are not known, and Eqs. (40) cannot help, because they introduce two 
unknown strains instead of two stresses. So, we need an additional equation for the strains. In the theory of 
elasticity, this equation has the form 

( ) rr                                  (43) 

and is known as the compatibility equation. However, we cannot use this equation, because it is derived under 
the condition that the space inside the solid is Euclidean before and after the deformation, whereas for the 
problem under study, the space is semi-Riemannian. To derive the necessary equation, we use the invariant 
condition for the Einstein tensor proposed by Vasiliev and Fedorov (2006). As known, the Einstein tensor in 
Eqs. (4)-(6) allows us to satisfy identically the conservation equation, Eq. (3). It is natural to presume that this 
property of the Einstein tensor is valid not only for the initial space, but for the deformed space as well. Thus, the 
only one independent in the problem under study space component of the Einstein tensor, 1

1G  (the component 
2
2G as noted, follows from Eq. (5), should not change under deformation, i.e., 

),(),( 1
1

1
1 

 rgGrgG ii                           (44) 

in which 1
1 ( , )iG g r  is specified by Eq. (4), whereas 1

1 ( , )iG g r
 can be found from Eq. (4) if we change g  and 

r  to ig  and r  in accordance with Eqs. (42) and neglect the terms which are nonlinear with respect to the 
strains. The resulting equation is 

1 1
1 1 2

2
( , ) ( , ) [ (1 ) (1 )]

2
i i

i i i r
i i i

h h
G g r G g r r r g r

r g h h


    
 
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Substitution in Eq. (44) yields 

  1 1
2

i i
i r

i i

rh rh
r g

h h   
    
       
   

                    (45) 

For Euclidean space, 1ih , 1ig  and Eq.(45) reduces to Eq.(43) which is the compatibility equation of the 
classical theory of elasticity.  
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Thus, we have now four equations, Eqs. (8)-(10) and Eq. (45). Presume that the sphere density is constant, so 
that 0  . Then, Eq. (9) transformed with the aid of Eq. (7) for  and Eq. (21) for ig  which is valid for 
any material with constant density 0  yields 

0

2 0 2
0

3
1

1
gi r

i g

r rh

h r r c




 
    

                       (46) 

Substituting this expression in Eq. (45) and using again Eq. (21) for ig , we arrive at the following final 
equation generalizing the compatibility equation, Eq.(43), of the theory of elasticity: 

2

2 2
0 0

3
( ) 2 ( ) 1 3

2
r r

r r r

r
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in which, as earlier, /r r R , (...) (...) /d dr   and 

0

2 0
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2(1 )
g

g

r r
r

r r
 


                         (48) 

Now, Eq. (47) should be written in terms of stresses with the aid of Eqs.(40). Introducing the following notations 

2
0

r
r c




 , 
2

0

2
( )rs

c  


                           (49) 

we can present the resulting equation as 

(2 ) (2 3 ) 4

( ){2(2 3 ) (1 3 )[(2 ) 4 ] 12 ( )} 0

r

r r r r

r G s G s G r

r G s r G s G G s

  

       

     

         
         (50) 

To derive the second equation, apply Eq. (8). Substituting ih  from Eq.(46) and using notations in Eqs. (49), we 
finally arrive at 

( )(1 3 )(1 ) 0r r rr s r                                   (51) 

Recall that ( )r entering Eqs. (50) and (51) is given by Eq. (48).  

The obtained set of equations, Eqs.(50) and (51), includes two unknown functions ( )r r  and ( )s r . The 
boundary conditions for the solid sphere specified by Eqs. (11). Using notations (49), we get  

( 0) 0s r   , ( 1) 0r r                               (52) 

Consider two particular cases. 

First, assume that 0
gr  is small in comparison with unity. Then, we can take ( ) 0r   in Eq. (50) and simplify 

it as 

(2 ) (2 3 ) 4 0rr G s G s Gr                               (53) 

To simplify respectively Eq.(51), we first neglect r  in comparison with unity, so that 
( ) 0rr s r     

Second, we neglect the term with 0
gr in the denominator of Eq.(48) for ( )r . The final equation becomes 

2 01
0

2r gr s r r                                      (54) 

Naturally, we cannot neglect the term with 0
gr in this equation, because the gravitation disappears in this case. 

Expressing s  from Eq.(54) and substituting it in Eq.(53), we get 
2 0 (6 5 )

4
2(2 )

g
r r

r r G
r

G


 


  


 

The solution of this equation satisfying the boundary conditions in Eqs.(52) is 
0

2(6 5 )
(1 )

20(2 )
g

r

r G
r

G







  


                              (55) 
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This solution corresponds to the classical elasticity and gravitation theories. Thus, for small 0
gr , GTR reduces to 

the classical (Newton) gravitation theory. 

Second, consider the perfect incompressible liquid with density 
0 discussed in Section 3.1. For the perfect 

liquid, the shear modulus 0G . Then, Eq.(50) reduces to 

3 ( )[6 (1 3 ) 12 ] 0r rr s s r s r s s          

This equation has only trivial solution 0
_

s  (this conclusion follows from the derivation of this equation). 
Thus, Eqs.(49) yields 

r p     and Eq.(51) coincides with the foregoing Eq.(23) for the perfect liquid 
which is considered in Section 3.1. 

Return to the elastic sphere described by Eqs.(50) and (51). For numerical calculation, presume that the 
Poisson’s ratio 0 . Then, in accordance with Eqs.(41), 0  and Eq.(50) takes the form 

22 ( )[2 (1 3 )( 2 ) 6 ] 0r r r rr s s r r s r s                                 (56) 

The results of numerical integration of Eqs.(51) and (56) are presented in Figure 6 which demonstrates the 
dependences of r on the radial coordinate for various values of the gravitational radius 0

gr . The curve 
corresponding to 0 8 / 9gr  , in contrast to the solution for the liquid in Eq.(25), does not demonstrate any 
singularity. However, this singularity appears at the sphere center while 0

gr  approaches unity. Dependence of 
stress ( 0)r r   on 0

gr  is shown in Figure 7 with a solid line. Dashed line corresponds to the classical 
solution in Eq. (55). As can be seen, the stress corresponding to GTR rapidly increases in the vicinity of 0 1gr  . 
As follows from the calculation, for 0 0.99gr  , we have (0) 4.6r   and for 0 0.999gr  , the stress is 

(0) 30.5r  . In the vicinity of the gravitation radius, numerical integration does not converge, and we can 
expect that the solution is singular if the sphere radius can reach the gravitational radius. Return to Eq. (30) 
which is valid for any material of the sphere. As can be seen, gr can reach unity, if the metric coefficient Rg  
on the surface of the sphere becomes infinitely high. 

5. Conclusion 

As follows from the foregoing analysis, singular metric coefficient cannot appear in the spherically symmetric 
static GTR problem for the liquid sphere (compressible or incompressible). The singularity can take place only 
for the field variable, i.e., for the pressure at the sphere center, and not for the metric coefficient, because the 
sphere radius cannot reach the gravitational radius. For this reason, the metric coefficient of the external field 
cannot be singular for the liquid sphere. 

However, for the solid sphere, the field variables, i.e. the stresses, and the metric coefficient of the internal field 
can become singular because the gravitational radius is the limiting point for the sphere radius. The same is true 
for the metric coefficient of the external field surrounding the solid sphere. 

The foregoing conclusions are valid only for the static problem under consideration. 
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Figure 1. Dependences of the density on pressure 

Figure 2.  
Dependences of the normalized 
pressure on the radial coordinate 
for 88.00 gr  and 888.00 gr  

  analytical solution 
 ○  numerical solution 

Figure 3. 
Dependences of the normalized 
pressure on the radial coordinate 

for 5.00 gr  and 0k , 1k  

Figure 4.  
Dependences of the metric 

coefficient on the radial coordinate 
for 5.00 gr  and 0k , 1k  

 

Figure 5. 
Dependences of 0

gr  and gr  on 
parameter k  

Figure 6. 
Dependences of the normalized 

radial stress on the radial 
coordinate for various 0

gr  values 

 

Figure 7. 
Dependences of the radial stress at 

the sphere center on the 
gravitational radius 
  GTR solution 

     Classical solution 

 

  


