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Abstract 

Multidimensional space-times are represented as curved surfaces embedded in higher dimensional flat spaces. 
The embedding of each surface is based on geometrical principles. According to these geometrical principles, we 
use variable separated coordinates so that the coordinates parameters become an orthogonal curved coordinates 
system for each space-time surface. In this way, we obtain that the universe expands and that the expansion is 
accelerated. By using co-moving coordinates and assuming that there is at least one geodesic which represent a 
straight line in the curved multidimensional space-time surface (this is a kind of "equivalence principle" of a new 
type), we obtain the curved multidimensional space-time surface's equation, its metric and accelerated expanded 
three-sphere surface's particles that also explains the accelerated expansion of the universe. 
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1. Introduction 
The study of multidimensional space-times started with the Kaluza and Klein (T.Appelquist, et al.,1987) (Paul K. 
Townsend and N.R. Wohlfarth,2003), who studied 5D space-times when the extra-dimensions are compact.  

In recent years more general types of space-times have been considered, like multidimensional space-times 
which are De-Sitter multidimensional-sphere surfaces considering the energy density of the vacuum (Y.B. 
Zeldovich, 1967) (Paul K. Townsend and Mattias N.R.Wohlfarth,2003) (Mauricio Bellini, 2006).  

Also, 5D curved space-time surfaces with a finite and an infinite extra-dimensions was studied (Y. Kim,et al., 
2002) (E.A. Bergshoff, et al., 2005) and 5D flat space-times with an infinite extra-dimension, based on De-Sitter 
metric considering the energy density of the vacuum, as Wesson,s model (P.S. Wesson, 1999) (Tomas Liko and 
Paul S. Wesson, 2005).  

Other explanations to the universe accelerated expansion are based on interacting a scalar field with 
non-negative potential often referred to as “dark energy” (E.I. Guendelman and A.B. Kaganovich, 2004).

 different 5D space-time model is Carmeli’s accelerating universe model (S. Behar and M. Carmeli, 2000) (M. 
Carmeli, 2002) (J. Hartnett, 2005) in which the extra-dimension is the radial velocity of the galaxies in the 
expanding universe. 

A five dimensional FLRW type Kaluza-Klein cosmological model with static extra-dimension has been studied 
in Ref. (K.Purohit, Bhatt and Yogesh, 2011).An inflationary model in 6D super-gravity has been constructed in 
Ref. (L.V. Nirop and C.P. Burgess, 2011), based on explicit time-depended solutions to the full 
higher-dimensional field equation, back-reacting to the presence of a 4D inflation rolling on a space-filling 
co-dimension-2 source brane. 

In our opinion, the best explanation for something that is unknown, is by using extra-dimensions. Therefore, we 
explained the universe accelerated expansion by using extra-dimensions (E. Guendelman and H. Ruchvarger, 
2004). 

In (E. Guendelman and H. Ruchvarger, 2004), we explain the universe accelerated expansion by defining a 
general orthogonal multidimensional variable separated coordinate system based on a three-sphere surface.  

In (E. Guendelman and H. Ruchvarger, 2004), we find the extra-dimensional metric component by a new 
equivalence principle that is an additional principle to Einstein's equivalence principle.  
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But by that new equivalence principle, we find only the first extra-dimensional metric component and to explain 
the universe acceleration expansion by an orthogonal multidimensional variable separated coordinate system, we 
need at least two extra-dimensions. 

In this article, we find the orthogonal multidimensional variable separated coordinate system that represents the 
embedded curved multidimensional space-time surface,  

by a special form of equations for the coordinates, based on geometrical principles. 

By this orthogonal multidimensional variable separated coordinate system, we obtain that the universe expands 
and that the expansion is accelerated, without the need of considering the energy density of the vacuum as in 
other studies (Y.B. Zeldovich,1967) (Paul K. Townsend and Mattias N.R.Wohlfarth,2003) (Mauricio Bellini, 
2006) and (P.S. Wesson, 1999) (Tomas Liko and Paul S. Wesson, 2005) .  

By this orthogonal curved multidimensional space-time surface coordinates, we also obtain the three-sphere 
surface coordinates, the metric components of all dimensions, including the extra-dimensions and the curved 
multidimensional space-time surface equation, for all the extra-dimensions that we want to use. 

2. Geometrical principles for the curved multidimensional space-time construction 
The multidimensional space-time is represented as a curved surface embedded in a flat space 
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and defined by an orthogonal variable separated coordinate system. 

Each additional coordinate after the first two coordinates 
1X  and 

2X  , depends only on an additional parameter 

while the former coordinates depend on the former parameters and on the additional parameters too, according to 
the following form 
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The form (2) is explained by the following geometrical principles:  

The coordinates X1, X2, X3, X4 are the embedding of the curved 3D surface in the curved 4D space-time surface, 
the coordinate Xt is a function of time and the coordinates X5,…Xn represent the extra-dimensions. 

The two horizontal axes X1 and X2 represent horizontal planes in the multidimensional hyper-plane. Therefore, 
the coordinates X1 and X2 depend on an horizontal angle   . 

The axis X3 does not depend on these horizontal planes and therefore does not depend on the horizontal angle  , 

but depends on a new parameter that is the vertical angle  . The axes X1, X2 and X3 represent 3D hyper-planes. 

The axis X4 does not depend on these 3D hyper-planes and therefore does not depend on the angles   and   

in these 3D hyper-planes, but depends on a new angle   that is perpendicular to the angles   and  . The 

axes X1, X2, X3 and X4 represent 4D hyper-planes including the curved 3D surfaces represented by the angles  , 

  and   . 

The axis Xt does not depend on these 4D hyper-planes and therefore does not depend on the angles  ,   and 

  in these 4D hyper-planes, but depends on the time t  that is a new parameter. The time t  is orthogonal to 

the curved 3D surfaces that are represented by the angles  ,   and  . Thus, t  is orthogonal to ,   and

  .The axes X1, X2, X3, X4 and Xt represent 5D hyper-planes including the curved 4D space-time surfaces 

represented by the angles  ,,  and to the time t . 

The extra-axis 
5X  does not depend on these 5D hyper-planes and therefore does not depend on the angles 

 ,,  and on the time t  that are the curved 4D space-time surfaces parameters, but depends on a new 

parameter 5f . The parameter 5f  is orthogonal to the curved 4D space-times that are represented by the angles 

 ,,  and the time t . 

Thus, 5f  is orthogonal to  ,,  and to t . The axes X1, X2, X3, X4, Xt, X5 represent 6D hyper-planes 

including the curved 5D space-time surfaces represented by the parameters 5,,,, ft  and so on for the 
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additional extra-dimensions.  

Thus, the parameters of the coordinates are the curved orthogonal coordinates of each multidimensional 
space-time surface, means that the metric of each space-time surface will not have off-diagonal components 
(Appendix A).  

3. The multidimensional coordinate system according to the geometrical principles 

According to the geometrical principles represented by (2), we define the curved multidimensional surface's 
coordinate system as follows 
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and                                                  
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where 
4321 ,,, ftfff    and 5j . 

According to the geometrical principles that we assume, the coordinates parameters represent a curved 
orthogonal coordinate system for the curved multidimensional space-time surface. Thus, the curved 
multidimensional metric will not have off-diagonal components, which means that  
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for each 5m . 

By the variable separate coordinates (3) and by (5), we obtain the following equations 
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(Appendix B) in which each curved 3D space surface becomes a three-sphere surface  
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with the radius 
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and the following coordinates 
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in which:   0and 0,   20    (Fig.1). 

4. The explanation for the universe accelerated expansion 

According to the coordinates parameters that represent a curved orthogonal coordinate system for the curved 
multidimensional space-time surface, we obtain 
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for each 5m   

By (3),(6) and (10), we obtain for each 5m  , the following equations 
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where .,. constCconstB tt   and 
t

t
t C

B
K   (Appendix C) . 

Thus, by (3),(6) and (11), time's metric component becomes as follows 
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By substituting (16) in (8), each three-sphere surface’s radius, becomes  
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Thus, by a special form of the equations (3) and (4) for the curved orthogonal multidimensional surface 
coordinates, based on (2), we show the universe accelerated expansion (17) without the need of considering the 
energy density of the vacuum.  

Also, in order to obtain the universe accelerated expansion, we have to use at least two extra-dimensions in 
which the curved multidimensional space-time surface is at least  

a curved 6D space-time surface. 

5. Extra-coordinates, extra-metric-components and curved multidimensional surface equations 

For more than 6-dimensional space-time surface, according to the curved orthogonal coordinate system we 
obtain that 0

5
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By (4),(6),(12) and (16) we obtain the first extra-coordinate  
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(Appendix D) and  
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For more than 7-dimensional space-time surface, according to the curved orthogonal coordinate system we 
obtain that 0

6


jffg , for each 7j .  

By (4),(6),(12),(16) and (19) we obtain the second extra-coordinate 
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(Appendix E) and by defining from now on that 1jK  for each 5j , we obtain      
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In this way we can go on and obtain more extra-coordinate equations and extra-metric component equations in 
which according to (20) and (22), the extra-parameters jf  can be changed into jp  

By (18), (19) and (21) where 1jK  and for each 5j ,the curved multidimensional space-time surface's 
equation becomes 
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where according to (19) and (21), we can write for each 25  nj  the following coordinates equation 
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in which 6, BBn  are constant values (Appendix F).  

The metric's equation for 7n  becomes 
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where 
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6. The last extra-coordinate and the final curved multidimensional surface equation by the equivalence 
principle  

According to the geodesic equations in multidimensional space-time surface, for a local point on a symmetric 
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sphere surface and 2n  co-moving coordinates of each 1n  dimensional space-time surface embedded in 
a n  dimensional space-time surface  

Where .4,3,2,1 constxi  and .1,,5 constp nj   , we obtain that 
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that by integration becomes 
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We assume that there is at least one geodesic which represent a straight line in the curved multidimensional 
space-time surface (this is a kind of "equivalence principle" of a new type (E. Guendelman and H. Ruchvarger, 
2006), in which 
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Thus, by (30), (31), (32) and according to the co-moving coordinates of 2n  dimensional space surfaces 
embedded in the n - dimensional space-time surface, we obtain that 
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where KK ,  and K   are constant positive values (Appendix G). 

For 1K , we obtain by the integration of (36), the last extra-coordinate as follows:  
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Thus, by (23) and (38), the final curved multidimensional surface's equation becomes:  
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and the curved  6-dimensional surface's equation, becomes 
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7. Velocity and acceleration of 3D particles by the equivalence principles 

According to Einstein’s equivalence principle in general relativity, we obtain the differential equation of the 
geodesic 
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for a local point on a symmetric three-sphere surface where .4,3,2,1 constxi   (9) that by integration becomes 
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where .constc   and 0.2  constcC . 

By (17), (42) and according to the new version for the equivalence principle (33) , 

we obtain for particles with a geodesic constant C , the following equations: 
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where k , B are constant values and k > 0 (Appendix H) .  

Thus, the 3D particles velocity represented by (43) is an expanding velocity and according to (44), there are 
accelerating expanding 3D particles that explains the universe's accelerated expansion. 
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8. Conclusions 
Multidimensional space-times are represented as curved surfaces embedded in higher dimensional flat spaces. 
The embedding of each surface is based on geometrical principles. 

Each new coordinate depends on a new parameter and does not depend on the former parameters. Thus, each 
coordinate depend on the parameters as separated variables.  

Each new parameter is an inverse function of the new coordinate and orthogonally of the former coordinates 
parameters, means that the curved multidimensional metric will not have off-diagonal components and this gives 
a condition on embedding functions.  

By using variable separated coordinates and orthogonal parameters as curved coordinates, equations are obtained, 
solving the metric components and we obtain that the universe expands and that the expansion is accelerated. By 
using co-moving n-2 coordinates in each n-1 dimensional curved space-time surface, in the n-dimensional 
curved space-time surface assuming that there is at least one geodesic which represent a straight line in the 
curved multidimensional space-time surface (this is a kind of "equivalence principle" of a new type), we obtain 
the curved multidimensional space-time surface's equation, its metric and accelerated expanded three-sphere 
surface's particles that explains the accelerated expansion of the universe, based on geometrical principles rather 
than specific dynamical equations. 

In our opinion, the best explanation for something that is unknown, is by using extra-dimensions. Therefore, we 
explained the universe accelerated expansion by using extra-dimensions (E. Guendelman and H. Ruchvarger, 
2004). 

In (E. Guendelman and H. Ruchvarger, 2004), we explain the universe accelerated expansion by defining a 
general orthogonal multidimensional variable separated coordinate system based on a three-sphere surface.  

In (E. Guendelman and H. Ruchvarger, 2004), we find the extra-dimensional metric component by a new 
equivalence principle that is an additional principle to Einstein's equivalence principle.  

But by that new equivalence principle, we find only the first extra-dimensional metric component and to explain 
the universe acceleration expansion by an orthogonal multidimensional variable separated coordinate system, we 
need at least two extra-dimensions. 

In this article, we find the orthogonal multidimensional variable separated coordinate system that represents the 
embedded curved multidimensional space-time surface, by a special form of equations for the coordinates, based 
on geometrical principles. 

By this orthogonal multidimensional variable separated coordinate system, we obtain that the universe expands 
and that the expansion is accelerated, without the need of considering the energy density of the vacuum as in 
other studies (Y.B. Zeldovich,1967, Paul K. Townsend and Mattias N.R.Wohlfarth,2003, Mauricio Bellini, 2006) 
and (P.S. Wesson, 1999, Tomas Liko and Paul S. Wesson, 2005).  

By this orthogonal curved multidimensional space-time surface coordinates, we also obtain the three-sphere 
surface coordinates, the metric components of all dimensions, including the extra-dimensions and the curved 
multidimensional space-time surface equation, for all the extra-dimensions that we want to use. 

According to (40) ,for each last space-like extra-dimension comparing with (E. Guendelman and H. Ruchvarger, 
2006) where 5n  ,we obtain a very similar solution as follows: 

1,
)(

)1(

)(
,

)1(

)(
22

22

22

22

22

22














 
 fC

fCA

fBC

fCA
g

pKKCK

pKCKK
g ff

nt

ntt
nn  

Thus, for each last space-like extra-dimension comparing with (E. Guendelman and H. Ruchvarger, 2006) where 
5n , we obtain a very similar solution. 
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Figure 1. A hyper-sphere or a three sphere surface represented by the coordinates: 
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Figure 2. Hyperbolic four-Dimensional space-time universe embedding infinite three-sphere surfaces represented 

by equation (18) 
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Appendix A-Proof that surface's metric, represented by a curved orthogonal coordinates system, has no 
off-diagonal component 

For a curved multidimensional surface represented by curved coordinates ),,( vu  and embedded in a 

higher-dimensional hyper-flat space with a orthogonal coordinate system ix , each point is represented by the 

vector 
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in which the vector 
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is tangential to the embedded surface. 

Vectors, tangential to the embedded surface in the parameter direction, means )(urd
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The angle between the vectors is solved by the equation 
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Thus,  
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which means that the metric of a surface represented by curved orthogonal coordinates, will not have 
off-diagonal components. 

Appendix B- 3D space coordinates components equations, calculated by variable separate coordinates and 
metric without off-diagonal components 

By (3) and according to the orthogonal coordinate system, we obtain for each 5m , the following equations 
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in which         
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that by integration becomes   
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in which      
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In the same way, by (3) and according to the orthogonal coordinate system, we obtain for each 5m , the 
following equations 
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that by integration becomes   
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In the same way, by (3) and according to the orthogonal coordinate system, we obtain for each 5m , the 
following equations 
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in which           

           1
41

44

5
444

5
111
















 const
dpp

dpp

pdpp

pdpp

n

m
mtt

n

m
mtt




              (64) 

that by integration becomes 
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in which    
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Appendix C- 4D space-time coordinates equations, calculated by variable separate coordinates and metric 
without off-diagonal components 

According to the orthogonal coordinate system and by (3),(6), in the same way as we obtain the former 
coordinates, we obtain for each 5m  the following equation  
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that becomes 
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and for each 5, mk , becomes 
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By integration of (72) and by (73), we obtain the following equations 
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where .constBt   . 

Appendix D-First extra-coordinate calculated by variable separate coordinates and metric without 
off-diagonal components 

According to the orthogonal coordinate system and by (3), (6), (12), (16), in the same way as we obtain the 
former coordinates, we obtain for each 6j   the following equation 
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and for each 6, ji , becomes 
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By integration of (74) and by (75), we obtain 
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By substituting (76) and (77) in (4), we obtain the first extra-coordinate 
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Appendix E-Second extra-coordinate calculated by variable separate coordinates and metric without 
off-diagonal components 

According to the orthogonal coordinate system and by (3),(6),(12),(16),(19), in the same way as we obtain the 
former coordinates, we obtain for each  7j , the following equation 
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that becomes  
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and for each 7, ji , becomes 
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By integration of (81) and by (82), we obtain that 
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By substituting (83) and (84) in (4), we obtain the second extra-coordinate 
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Appendix F-The calculation of two last extra-coordinates and the space-time expected surface equations 

Refers to (23), in order to obtain 22
1 nn pp   as a function of the coordinates 1nX  and nX , we can decide 

that 7n  and according to the orthogonal coordinate system in which 
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we obtain by the separated variable coordinates in (86), the following equations 
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By the integrations of (87), we obtain the following equations 
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By substituting (88) and (89) in (4), we obtain the coordinate 
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and the curved 7D space-time surface's equation  
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Appendix G- Last extra-coordinate as function of last curved coordinate, calculated by assuming 
co-moving coordinates and by the equivalence principles 

By substituting (28) in (32), we obtain  
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According to the new version for the equivalence principle (33) and by (34),(93), 

we obtain 
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and 
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where  KK ,  and K   are constants . 

By (28) and (96) , for 1K  we also obtain that 
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Appendix H- Velocity and acceleration of 3D particles in extra-dimensions, calculated by the equivalence 
principles 

According to the new version for the equivalence principle (33) and by (8), (9),(16), (31), we obtain for particles 
with a geodesic constant  C  the following equations 
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(98) 

where 4,3,2,1, ixi
 are constants. 

Thus,  
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and  
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that by integration becomes 
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Thus, the 3D particles velocity is an expanding velocity, according to 
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and the 3D  particles acceleration becomes 
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where k = constant and k > 0. 

By (98) we also obtain that, 
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in which by integration becomes 
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and 
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By substituting (106) in (103), the 3D particles acceleration becomes 
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where .constB  . 

 


