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Abstract 

The commonly used thermodynamic variables are generalized so as to take account of irreversible processes 
across a thin boundary separating a system from its surroundings. This permits one to relate heat transfer and 
work performance in irreversible processes to those carried out reversibly. The commonly used functions of state 
have been generalized to include the contribution of irreversible changes to the entropy of the system. These 
contributions are specified in terms of experimental observables. 
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1. Basic Commentary 

The magnificent structure of thermodynamics has been of immense utility in unifying our understanding of 
physical phenomena for over 170 years. The early developments that were based on the fundamental laws of 
thermodynamics involved the concept of equilibrium and reversibility: systems were assumed to be either in a 
stationary state, or all processes were assumed to proceed infinitely slowly so that the system never deviated 
significantly from equilibrium conditions. Beginning around the turn of the 20th century, investigators extended 
the original theories so as to include processes that involved first order departures from the equilibrium state, by 
allowing the properties of interest to become local functions of position and time. This opened up a plethora of 
new effects and applications under the heading of nonequilibium thermodynamics or extended thermodynamics, 
which are well documented in many reviews, a selection of which is provided below (Meixner, 1954) (de Groot 
and Mazur, 1962) (Prigogine, 1967) (Gyarmati, 1970) (Haase, 1990) (Mueller and Ruggeri, 1996) (Jou, 1996) 
(Kondepudi and Prigogine, 1998) (Honig, 2007). In this connection it may be of interest to draw attention to a 
recent complementary approach (Honig and Ben Amotz, 2005, 2008) (Ben Amotz and Honig, 2006), in which 
the thermodynamic functions of state are enlarged to accommodate the contribution of irreversible processes to 
the entropy of the system. This is achieved by replacing the customary inequalities in elementary treatments by 
equalities. Such an approach finds its principal application in dealing with the transfer of matter, energy, and 
entropy across thin boundaries, by forcing relevant thermodynamic variables to adhere to a strict predetermined 
time dependence. As a prelude to this approach, detailed in earlier papers (Hoehn and Honig, 2011) (Honig and 
Hoehn, 2011), it was necessary to augment the conventional approach to the first and second laws through 
inclusion of irreversible processes. The aim of the present paper is to review this particular methodology. The 
theory, outlined below, certainly has antecedents cited in de Groot and Mazur (1962) and Gyarmati (1970), but 
those theoretical studies focused more on what is now termed extended thermodynamics, in which emphasis is 
placed on the identification of fluxes and thermodynamic forces in relation to steady state conditions, rather than 
on the time dependent phenomena studied in our earlier publications. Contributions in the literature directly 
relevant to the current investigation will be referred to at appropriate places. The author is not aware of any prior 
unified discussion of the material covered in the present review.  

2. Preliminaries 

The universe under study consists of a system that is characterized by temperature, pressure, and chemical 
potentials that differ from the corresponding intensive variables of a reservoir to which the system is anchored 
via a thin interlayer, as depicted in Fig. 1. For purposes of illustration the diagram depicts the temperature profile 
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under consideration: all processes are assumed to occur sufficiently slowly that the system temperature remains 
uniform throughout; the temperature T then changes smoothly but abruptly over the extension of the separation 
barrier until it assumes the uniform value T0 of the system. This uniformity assumption restricts us to the 
consideration of quasistatic irreversible (QSI) phenomena, i.e., conditions not too far removed from 
reversibility, so as to avoid excesses such as turbulence, vortex formation, and the like. However, there is no 
restriction on the magnitude of the temperature difference. Similar considerations apply to other intensive 
variables, such as the pressure, or the various chemical potentials. The reservoir is assumed to be of such 
immense size and to remain so well mixed that its intensive variables remain unaltered in any of the processes 
considered below. Moreover, in conformity with standard practice, we assume that all events within the reservoir 
take place reversibly. The above uniformity restrictions on intensive variables may certainly be relaxed, but the 
resulting theory then becomes much more complex and obscures the fundamental principles developed below. 

3. Entropy Changes  

We begin with a study of entropy changes during an infinitesimal step of a particular process, which is first 
carried out reversibly. Designate the entropy change of the universe as dSu, and let it be written as a sum of the 
entropy change dS of the system and the entropy change daS0 of the surroundings. Then, according to the Second 
Law no change is incurred in the entropy of the universe; thus 

daSu ≡  dS  + daS0  = 0.                                 (1a) 

Next, let the same step in the process within the system be carried out irreversibly. Since entropy is a function of 
state of the system, dS is the same as before; however, the entropy change in the surroundings, designated by 
dbS0, is now different. The entropy change of the universe is then governed by the inequality 

dbSu ≡  dS  + dbS0  >  0.                               (1b) 

The use of inequalities is at best awkward and carries no information on the actual value of the variable of 
interest. Hence it is apposite to introduce an entropy deficit function đθ > 0 for the express purpose of converting 
Eq. (1b) into an equality, whereby it becomes possible to extend the standard methodology to irreversible 
phenomena: 

dbSu ≡  dS  + dbS0  - đθ  = 0.                             (1c) 

At this stage the quantity đθ is simply a bookkeeping device. However, it becomes a meaningful quantity when 
we subtract (1a) from (1c) to obtain 

dbS0  -  daS0  =  đθ,                                  (1d) 

which indicates that đθ represents the entropy transferred between the system and the surroundings when the 
infinitesimal step of interest in the system is carried out irreversibly as opposed to reversibly. Hence, a study of 
đθ becomes important in its own right. 

We first restrict attention to heat exchanges taking place as a result of the temperature difference between the 
system and the reservoir. For ease of visualization we assume that T0 > T, so that in an infinitesimal step in the 
isolated unit of system + surroundings, any heat (đQ) gained by the system operating at temperature T is lost by 
the surroundings (đQ0) operating at temperature T0, whence đQ = - đQ0.  

During a reversible process (r), where the surroundings are at temperature T0 infinitesimally above T, the 
corresponding entropy change of the system is given by dS ≡ drS = đrQ/T, whence, by (1a), the entropy change in 
the surroundings is given by 

- daS0  =   dS  =  đrQ/T.                              (2a) 

For the same step executed irreversibly (i), with the temperature of the system at T and that of the surroundings 
at T0, the resulting heat exchange - đbQ0 = điQ produces an entropy change in the surroundings specified by  

- dbS0  = - đbQ0/T0  =  điQ/T0,                             (2b) 

where we invoked the reversibility of all processes in the reservoir. On inserting Eqs. (2a) and (2b) into Eq. (1d) 
we obtain the fundamental relation 

điQ/T0  =  đrQ/T  -  đθ.                              (3a) 

or its equivalent 

điQ  =  (T0/T) đrQ  - T0 đθ  = T0(dS – đθ)                       (3b) 
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  đrQ  +  (T0/T  - 1) đrQ  - T0 đ                         (3c) 

which now relates the heat transferred irreversibly in the infinitesimal step to that transferred reversibly. Eq. (3b) 
duplicates the expression derived by a different method (Tolman and Fine 1948). Eq. (3a) clearly shows that  

điQ  <  (T0/T) đrQ = T0dS,                              (3d) 

and in the event that the reservoir temperature approaches that of the system we obtain a more restrictive 
inequality 

điQ  <  đrQ   =  TdS,                               (3e) 

which is the famous Clausius inequality. It applies when a reversible heat transfer triggers irreversible processes 
totally with the system; Eq. (3d) is its generalization, arising from the double inequality điQ < đrQ < (T0/T) đrQ.  

In view of the requirement (3e) – which automatically allows for (3d) - the sum of the last two terms in Eq. (3c) 
must be negative:  

 (T0/T  - 1) đrQ  - T0 đθ  <  0.                             (3f) 

Careful examination shows that the above relations still apply when T > T0, whereby heat is transferred from the 
system to the reservoir: in this event điQ is more negative than đrQ, which is more negative than (T0/T)đrQ. 
Furthermore, the inequality (3f) remains unaltered: when đrQ < 0 the factor (T0/T - 1) is also negative.  

 Eq. (3b) may be turned around to read 

dS  = điQ/T0 + đθ  >  điQ/T0,                             (3g) 

Thus, as is well known, in irreversible phenomena the total entropy change in the system is only partially 
compensated for by the transfer of heat across its boundaries, the remainder being attributed to the irreversibility 
effects totally within the system. Observe that it is the well-defined temperature of the reservoir that enters this 
relation. This should be contrasted with the usual expression dS = đrQ /T, where the entropy change is tracked by 
the reversible heat transfer at the common temperature T. However, Eq. (3g) becomes useful only after methods 
are developed below that specify đθ in terms of experimentally measurable quantities, as shown below.  

It is noteworthy that for processes that occur in isolation Eq. (3g) reduces to  

δS =  đθ  > 0,                                   (3h) 

where the δ symbol serves as a reminder of the special conditions that prevail. As is well established, this 
equation shows that all processes proceeding without outside intervention (after release of a constraint) increase 
the entropy of the system. Such changes take place irreversibly since they are unaffected by outside 
manipulations. Successive increments produce a monotonic entropy increase until a state of maximum entropy is 
reached when the spontaneous process has run its course, at which point δS = 0. This is the content of the famous 
dictum by Clausius that the entropy of the world (nowadays, we would say, of our universe) tends toward a 
maximum.  

4. Performance of Work 

At this point we introduce the First Law of Thermodynamics according to which the energy E is a function of 
state. Then  

dE  =  đrQ  +  đrW =  điQ  +  điW,                          (4a) 

where W is the work performed during the process. On eliminating điQ between (3c) and (4a) we may solve for  

điW  =  đrW -  (T0/T  - 1) đrQ  + T0 đθ = đrW - (T0 – T)dS + T0 đθ.              (4b) 

The last two terms in Eq. (4b) differ in sign from those cited in Eq. (3f). It follows that  

điW  > đrW.                                       (4c) 

When the process is carried out under conditions where T and T0 differ only infinitesimally, 

điW =  đrW + T0đθ,                                   (4d) 

so that T0đθ may then also be interpreted as the infinitesimal difference in work performance under reversible, as 
opposed to irreversible conditions, where additional phenomena take place as a result of the irreversible heat 
transfer. 
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The above results are well known and accord with intuition. In any (infinitesimal) step the work performance is 
independent of the mode of operation. That is, in a given change dE in energy of the system it does not matter 
whether this process is executed in terms of mechanical, electric, magnetic, or as any other type of work. Taking 
gravitational work as an example, it is intuitively clear that in irreversibly lifting a weight against the force of 
gravity over a given distance, more work is expended than in doing this reversibly. Hence, more generally in 
accord with Eq. (4d), for any given process we may set điW > đrW no matter what type of work is performed. 
This inequality holds even when both quantities are negative: the system performs less useful work in an 
irreversible than in a reversible step (i.e., điW is less negative than đrW). In view of (4c) or (3f), Eq. (4b) leads to 
an important inequality: 

đθ  >  (1 -  T/T0)dS,                              (4e) 

Here the right hand side is always positive, as explained earlier. Thus, đθ has as its lower nontrivial bound the 
quantity on the right, which exceeds zero when the temperature of the system differs from that of the 
surroundings. Eq. (4e) provides useful information on đθ in terms of experimentally determinable variables T, 
T0, and dS.   

5. Specification of the Deficit Function  

A very significant feature of the present analysis is manifested by solving Eq. (4b) for 

đθ  =  (điW -  đrW)/T0  +  (1 – T/T0)dS.                        (5a) 

This relation allows one to determine the contribution of irreversible phenomena to the infinitesimal entropy 
change of any process (subject to the constraints introduced earlier) in terms of quantities that may be measured 
or calculated. This requires monitoring the change in entropy of the system while incrementally carrying out a 
given process, taking due account of the change in temperature T; heat capacity measurements may be used for 
this purpose. Also, one needs to determine the total work required for executing the same change reversibly and 
irreversibly, equivalent to noting by how much a given weight changes height in the earth’s gravitational field in 
the two processes.  

We note that in the absence of work performance Eq. (5a) reduces to 

đθ  =  (1/T – 1/T0) đrQ,                                (5b) 

which was derived elsewhere by different means (Kestin, 1966). The first term in Eq. (5a) was obtained by a 
different approach (Bejan, 1997). Eq. (5a) further provides a thermodynamic background for the theoretical work 
of Jarzynski (1997) who related the average of repeated executions of irreversible microscopic processes to 
thermodynamic equilibrium processes. This work was confined to processes executed at constant temperature; 
the above relation shows how this analysis may be extended.  

We next consider alternative methods for specifying đθ. 

6. Functions of State 

So far we have discussed the properties of path-dependent quantities. We now turn to the development of 
functions of state under non-equilibrium conditions. This generalizes the conventional development of state 
functions.  

6.1 The Energy 

We begin with a consideration of the energy of a system. For this purpose we first apply the First Law of 
Thermodynamics to the surroundings, whose properties are all designated by the subscript zero. For an open 
system the energy differential under the assumed reversible operating conditions is specified by  

dE0  =   T0dS0  -  P0dV0  +  Σiμ0idn0i,                     (6a) 

where P0 is the prevailing pressure, V0 the volume, μ0i the chemical potential of species i, and n0i is the 
corresponding mole number, all in the surroundings. Let the closed unit of system + surroundings be maintained 
at a constant volume. In that event, when the isolated unit undergoes irreversible processes, the system is subject 
to the constraints dE = - dE0, dS0 ≡ dbS0 = - dS + đθ (See Eq. (1c)), dV0 = - dV, and dn0i = - dni, so that the 
energy differential of the system is given as  

dE = T0dS  -  P0dV  +  Σiμ0idni  - T0đθ.                      (6b) 

This relation, involving different arguments, was derived by Kestin (1966). The intensive variables appearing 
here are those of the surroundings and are therefore well defined, even when processes within the system are 
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irreversible. The extensive quantities dS, dV, dni are the control variables for the energy of the system; đθ is 
determined as shown in Eq. (5) or by the expressions developed below. Hence, dE is well defined in the QSI 
procedure even under non-equilibrium operating conditions. If work other than mechanical is involved, 
appropriate terms must be added to Eq. (6b) as a product of intensive variables appropriate to the relevant work 
reservoir, and corresponding extensive variables for the system proper. 

It is instructive to rewrite Eq. (6b) in the form 

dE =  (T0 – T)dS  -  (P0 – P)dV + Σi(μ0i – μi)dni + TdS - PdV + Σiμidni - T0đθ,           (6c) 

where the variables lacking the subscript zero refer to the properties of the system. Eq. (6c) is the generalized 
version of the conventional energy differential. Two special situations are of interest: Case (a). The infinitesimal 
step is executed reversibly, with T = T0, P = P0, μ0i = μi and đθ = 0; then (6c) reduces to the standard form  

dE =  TdS  - PdV. + Σiμidni.                             (6d) 

Case (b). Here one removes the system slightly but irreversibly from its equilibrium state with dS = dV = dni = 0 
(all i) by external intervention, then removing the interference and allowing the system to respond under these 
constraints. This process is characterized via the relation (6b): 

δE = - T0 đθ,                                     (6e) 

where the δ symbol serves as a reminder of the special conditions under which this probing process is carried 
out. Thus, in the absence of normal driving processes any ongoing process occurs purely internally, while not 
being subject to experimental control. Thus, with đθ > 0 the energy of the system will spontaneously diminish in 
this step. On generalizing to finite processes, the energy of the system will continue to decrease until a state is 
reached where the spontaneous process ceases: then δE = 0, and the energy of the system has reached a 
minimum consistent with the applied constraints. This is a statement that the energy of a system undergoing 
spontaneous processes will decrease until an equilibrium configuration has been reached. 

Lastly since E is a function of state we may subtract (6d) from (6c) to obtain 

T0đθ  =  (T0 – T)dS  -  (P0 – P)dV + Σi(μ0i – μi)dni.                   (6f) 

Since the quantities on the right are experimentally accessible the above equation permits the determination of 
đθ in terms of S, V, and ni as the control variables.  

However, the above quantities are not generally the ones used in experiments; we next develop alternative 
expressions for đθ in terms of more readily accessible control parameters. 

6.2 The Helmholtz Energy 

In a similar manner we can construct the Helmholtz energy by introducing the definition A = E – TS, which 
sensibly involves the temperature T of the system. This transforms the independent variable from S to T. Using 
Eq. (6c) we then find that 

 dA  = (T0 – T)dS  -  (P0 – P)dV + Σi(μ0i – μi)dni - SdT  - PdV + Σiμidni - T0đθ.           (7a) 

However, since A = A(T,V,ni), the control variables for the Helmholtz energy are supposed to be temperature, 
volume, and composition, whereas Eq. (7a) involves a mix of variables. As a remedy we express the entropy in 
terms of the applicable control variables by setting S = S(T,V,ni). This yields the entropy in the appropriate 
differential form  

dS = (∂S/∂T)V, in  dT + (∂S/∂V)T, in  dV  + Σi(∂S/∂ni)T,V, jin
dni                 (7b) 

Substitution in (7a) then produces the expression: 

dA  = (T0 – T)[(∂S/∂T)V, in dT  + (∂S/∂V)T, in dV  + Σi(∂S/∂ni)T,V, jin
dni]  -  (P0 – P)dV 

+ Σi(μ0i – μi)dni  -  SdT  -  PdV  + Σiμidni  - T0đθ.                    (7c) 

The partial differentials in the above relation may be rewritten in the following manner: (∂S/∂T)V, in = CV/T, and 

(∂S/∂V)T, in = (∂P/∂T)V,
,

in  where CV is the heat capacity at constant volume and composition, and where the 
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appropriate Maxwell relation has been introduced. Also, we use the mathematical identity 
     

iii n,Tn,Pn,V P/V/T/VT/P   and then replace the numerator and denominator by - αV and by - 

βV, where α and β are the isobaric coefficient of expansion and the isothermal compressibility respectively. We 
also set   inVTi SnS

ij





,,/ as the differential entropy at constant temperature, volume and composition of 

species i. In this notation,  

dA   =  (T0 – T)[(CV/T)dT  +  (α/β) dV  +  Σi iS


dni]  - (P0 – P)dV 

 + Σi(μ0i – μi)dni  -  SdT  -  PdV  +  Σiμidni  -  T0đθ                   (7d) 

The above equation specifies the differential of the Helmholtz function under non-equilibrium conditions in 
terms of T, V, and the ni. The associated coefficients involve measurable quantities. 

Under constraint (a) in which a reversible process is carried out with T = T0, P = P0, μi = μ0i, and đθ = 0, the 
Helmholtz function reduces to the standard form 

dA = - SdT  - PdV + Σiμidni.                               (7e) 

Under constraint (b) we deform the system by external intervention under the conditions dT = dV = dni = 0 to an 
adjacent state, and then release the system under these conditions. By analogy to the preceding discussion the 
resulting process will again be spontaneous and subject to the relation 

δA =  - T0 đθ,                                   (7f) 

which shows that in a spontaneous process the Helmholtz energy diminishes and reaches a minimum at 
equilibrium, consistent with the indicated constraints. 

Since A is a function of state we may subtract (7e) from (7d) to find  

T0đθ  =  (T0 – T)[(CV/T)dT + (α/β) dV  +  Σi iS


dni]  -  (P0 – P)dV  + Σi(μ0i – μi)dni,       (7g) 

which provides a second scheme for determining the entropy deficit function, here in terms of T, V, and ni as 
relevant experimental variables; all the coefficients involve measurable quantities. 

6.3 The Gibbs Energy 

Using by now familiar methodology, we define the Gibbs energy by the relation G = E –TS + PV. When 
converted to differential form, and on insertion of Eq. (7a), we obtain 

dG  =  (T0 – T)dS  -  (P0 – P)dV  +  Σi(μ0i – μi)dni   - SdT  + VdP + Σiμidni - T0đθ        (8a) 

as the expression that holds under non-equilibrium conditions.  However, the control variables in present 
circumstances should be T, P, and composition. Therefore, following the above recipe, we must express the 
entropy in the form S = S(T,P,ni) and the volume as V = V(T,P,ni), with corresponding differentials for dS and 
dV. On inserting these in (8a) we obtain 

dG  =  (T0 – T)[(∂S/∂T)P, in dT  + (∂S/∂P)T, in dP + Σi(∂S/∂ni)T,P, jin
dni] 

- (P0 – P)[(∂V/∂T)P, in dT  + (∂V/∂P)T, in dP + Σi(∂V/∂ni)T,P, jin
 dni ] + Σi(μ0i – μi)dni 

- SdT  + VdP  + Σiμidni - T0đθ.                               (8b) 

We next introduce the relations (∂S/∂T)P,
in = CP/T and the Maxwell relation (∂S/∂P)T, in  = - (∂V/∂T)P, in . As 

before, the partial derivatives - (∂V/∂P)T, in and (∂V/∂T)P, in are specified by βV and by αV respectively. 
(∂S/∂ni)T,P, jin

and (∂V/∂ni)T,P, jin
represent partial molal entropies 

iS and volumes iV . We then rewrite Eq. (8b) 
in the less unwieldy form 

dG  =  (T0 – T)[(CP/T)dT  - αVdP + Σi iS dni] -  (P0 – P)[ αVdT 
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- βVdP + Σi iV dni]  + Σi(μ0i – μi)dni  -  SdT  + VdP + Σiμidni - T0đθ.            (8c) 

Eq. (8c) is a generalization of the conventional Gibbs function which holds under non-equilibrium conditions. 

We once more consider two cases. Under alternative (a) we obtain the standard form 

dG  =  - SdT  + VdP + Σiμidni.                           (8d) 

Under alternative (b) we contemplate a displacement of the system in the familiar manner from its equilibrium 
value to an adjacent state under the constraints dT = dP = dni = 0, and then allow the system to undergo a 
spontaneous process back to the equilibrium state. This leads to the relation 

δG  = - T0 đθ,                                   (8e) 

which shows that the Gibbs energy at equilibrium is a minimum under the indicated constraints. 

Note further that when (8d) is subtracted from (8c) we obtain 

T0đθ  =  (T0 – T)[(CP/T)dT  - αVdP + Σi iS dni] -  (P0 – P)[αVdT 

  - βVdP + Σi iV dni] + Σi(μ0i – μi)dni,                           (8f) 

which shows how one may determine the deficit function when T, P, and composition are the independent 
variables. 

6.4 The Enthalpy 

Lastly, we turn to the enthalpy H = E + PV. By the customary technique we develop the differential form dH = 
dE + PdV + VdP and then insert Eq. (6c). We obtain 

dH =  (T0 – T)dS  -  (P0 – P)dV  + Σi(μ0i – μi)dni  + TdS  + VdP + Σ μidni – T0 đθ.       (9a) 

Since H = H(S,P,ni), it is S, P, and composition that are regarded as control variables.  We therefore consider 
the volume first in the form V = V(P,T,ni).  We next introduce the entropy as a function of the same variables: S 
= S(P,T.ni), which function we invert to read T = T(S,P,ni).  Lastly, we insert this expression into the equation 
of state: thus,  

V = V(P,T(S,P,ni),ni) ≡ V(S,P,ni). 

On taking the differential of this latter relation we find 

dV  = (∂V/∂S)P, in  dS +  (∂V/∂P)S, in dP +  (∂V/∂ni)S,P, jin
dni.             (9b) 

Then, substituting (9b) into (9a) we obtain 

dH =  (T0 – T)dS  -  (P0 – P)[(∂V/∂S)P, in dS +  (∂V/∂P)S, in dP +  (∂V/∂ni)S,P, jin
dni] 

+ Σi(μ0i – μi)dni  + TdS  + VdP + Σiμidni  - T0đθ.                   (9c) 

This specifies the enthalpy change in an infinitesimal step under nonequilibrium conditions. Under constraint (a) 
Eq. (9b) reduces to the standard form 

dH  =  TdS  + VdP + Σiμidni,                           (9d) 

while under constraint (b), with dP = dS = dni = 0 we obtain the result 

δH  = - T0đθ,                                    (9e) 

where again we noted that the enthalpy change in such a spontaneous process is a minimum under equilibrium 
conditions, subject to the relevant constraints. 

When (9d) is subtracted from (9c) we find that 
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T0đθ  = (T0 – T)dS  -  (P0 – P)[(∂V/∂S)P, in dS +  (∂V/∂P)S, in dP + Σi(∂V/∂ni)S,P, jin
dni], 

+ Σi(μ0i – μi)dni,                                    (9f) 

which yields yet another formulation for the deficit function that holds when S, P, and ni are the variables of 
interest. 

The minima achieved by the above functions of state should be contrasted with the maximum that characterizes 
the entropy of an isolated system undergoing spontaneous processes. 

7. Concluding Remarks 

Complementary to the standard methodology of irreversible thermodynamics the above approach focuses on 
extending the conventional functions of state so as to include contributions arising from irreversible processes. In 
particular, their contribution to the entropy of a system has been specified in terms of applicable control 
variables. This serves as a basis for dealing with exchange of matter, energy, and entropy across a narrow 
interface between a system and its surroundings under non-equilibrium conditions. As shown elsewhere (Hoehn 
and Honig, 2011; Honig and Hoehn, 2011), the actual determination of the entropy is carried out by specifying 
the time dependence of all applicable control variables and then integrating the relevant relation involving đθ, 
namely (6f), (7g), (8f), or (9f). The principal restriction, in common with standard procedures, is that the changes 
must occur sufficiently slowly that all intensive quantities in the system change uniformly, but there is no limit 
set on the difference between these quantities and those of the reservoir to which the system is anchored. Explicit 
relations have been provided, loc. cit., which allow one to determine the contribution of irreversible processes to 
the entropy change of a system under prescribed conditions, based on the use of Eqs. (8f) and (7g).  

It is hoped that the present treatment provides further insights on how to deal with irreversible phenomena within 
the framework of equilibrium thermodynamics. 
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Figure 1. Temperature Profile for a System at temperature T (left) 

Attached to a Reservoir at Temperature T0 (right); the Temperature 

Difference is confined to a Narrow Region of Area A and Length l. 


