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Abstract 

Molecular dynamics simulation is being widely applied in condensed matter physics, rather Monte Carlo 
simulation, whenever the dynamic properties are of much interest. Particulary of equilibrium and 
non-equilibrium phenomena, transport phenomena, diffusivity, specific heat and phase transitions etc. Therefore, 
we have used this method, in order to obtain more informations about the structural, elastic and thermodynamic 
properties of ZnS0.25Se0.75, ZnS0.5Se0.5 and ZnS0.75Se0.25. We have also predicted the disorder effect (bowing 
parameter). 

We have used molecular simulation coupled with the empirical interatomic potentials on the Tersoff which 
include the three-body interatomic interactions. 

We have proposed empirical potentials of Tersoff parameters of ZnSxSe1-x for x = 0.25, x = 0.50 and x = 0.75. 
We have tested the validity of our fitting of empirical interatomic potentials parameters by calculating the 
physical properties. Overall, the results are in good agreement with other calculations. 
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1. Introduction  

In recent years, computer simulations have become an increasingly powerful tool for studying materials 
properties and their behaviour. While first principles quantum methods generally give the most accurate results, 
they cannot be applied to problems which require much larger system sizes or longer simulations. For these 
investigations, empirical many-body potentials can be used to provide useful first results 

The wide band gap II-VI semiconductors have been regarded as promising materials for the fabrication of 
visible-light-emitting devisces for decades. ZnS and ZnSe are the prototype II-VI semiconductors and their cubic 
phase, which occurs naturally as a mineral, has been called the zinc-blende structure (M. A. Haase, et al., 
2001).On the theoretical side,many authors have studied these semiconductors to explore their electronic 
properties, using various computational methods (W. Xie, et al., 1993). ZnSxSe1-x is an interesting compound 
semiconductor for optoelectronic applications (M. A. Haase, et al., 2001, W. Xie, et al., 1993, M. J. Kastner, et 
al., 1996). The ternary compound has many advantages over binary compounds: ZnS and ZnSe, because the 
lattice constant, the bulk modulus, band gap and optical properties can be varied by changing the concentration 
(H. Jeon, et al., 1991).  

However, no elastic and thermodynamic calculations have been performed on ZnS and ZnSe and their alloy, 
using a three-body potential coupled with Molecular Dynamics simulation, to our knowledge. 

The mixed crystals were prepared and analysed as a complete solid solution and a core-shell type of crystal by 
the X-ray diffraction method. X-ray diffraction patterns of these alloy systems indicated a cubic zinc-blende 
structure and showed that the lattice parameter changed linearly with alloy concentration without changes in the 
crystal structure (Chin-Tsar Hsu, J., 1998). 

In this paper, we present the results of molecular dynamics simulation of ZnSxSe1-x for x  0.25, x = 0.5 and x = 
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0.75; which are compared with experimental results (James E. Bernard and Alex Zunger, 1987).  

Based on the Tersoff potential, molecular dynamics simulations are investigated in order to study the miscibility 
of ZnSxSe1-x and to calculate the structural properties of ZnS0.25Se0.75, ZnS0.5Se0.5 and ZnS0.75Se0.25 which are 
compared with experimental results (James E. Bernard and Alex Zunger, 1987). Various elastic and 
thermodynamic properties are also predicted, such as C11, C12, thermal expansion coefficient, heat capacity, 
Debye temperature and melting temperature. 

The rest of the paper is organised as follows: in Section 2, we give a brief description of the model used, and 
calculation method. Then, the results of our calculation are presented and discussed in Section 3. Finally, a 
conclusion is given in Section 4.  

2. Details of calculations 

A molecular dynamics calculation is a dynamic study of a many-body system in which the equations of motion 
are solved explicitly. In the MD calculation one solves the equations motion numerically and from the phase 
space trajectories one can follow the motions of the atoms in an isolated system (constant N, V and E) or (N, V 
and T). The potentials of interactions of the atoms, and hence the force, are necessary input parameters; This 
trajectory contains all of the microscopic information relevant to the system. We present an atomistic simulation 
based on a three-body potential, and we mainly use the Tersoff model to calculate dynamic quantities and, to 
predict the different thermodynamical properties. 

Among the many empirical model potentials that have been developed for tetrahedral semiconductors, that of 
Tersoff has been the most successful in that it reproduces many of the elemental semiconductors properties 
particularly for silicon ( J.Tersoff, 1988, Rev. B. 38), and carbon ( J.Tersoff, 1988, Phys. Rev. Lett. 61). 

Recently, this model was extended to study the physical properties of SiC (J. Tersoff, 1989), AgI (W. Sekkal, et 
al., 1999) and CuI (A. Laref, et al., 1999). 

Another form is developed for multicomponent systems (J. Tersoff.1989, Phys. Rev. B. 39) to treat mixtures of 
these elements. This potential developed by Tersoff, are based on the concept of bond order. The strength of a 
bond between two atoms is not constant, but depends on the local environnement (A. Laref, et al., 1999). 

Because of the crucial role of bond order and its dependence upon local geometry, it seems attractive to include 
an environment-dependent bond order explicity into the potential in the following way. The interatomic potential 
is taken to have the form (J. Tersoff.1989, Phys. Rev. B. 39): 
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Here E is the total energy of the system, which is decomposed for convenience into a site energy Ei and a bond 
energy Vij. The indices i and j run over the atoms of the system, and rij is the distance from atom i to atom j. 
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The function fR represents a repulsive pair potential and fA represents a attractive pair potential associated with 
bonding. fC is a smooth cutoff function, to limit the range of the potential, since for many applications 
short-ranged functions permit a tremendous reduction in computational effort. 
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where bij is the many-body order parameter describing how the bond-formation energy is affected by local 
atomic arrangement due to the presence of other neighbouring atoms ( the k atoms). It is many-body function of 
the positions of atoms i, j and k.  

where ζij is called the effective coordination number and g(ijk ) is a function of the angle between rij and rik that 
has been fitted to stabilize the tetrahedral structure. 
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We note that 3 and  are set equal to zero (J. Tersoff., 1998), and  is a parameter which strengthens or weakens 
the heteropolar bonds, relative to the value obtained by simple interpolation. 

Tersoff parameters for ZnSe and ZnS were recently proposed (F. Benkabou,et al., 2000). From these values and 
using the above Equations (1) – (12), we have calculated the potential parameters (A, B,  , , n,, h, c, d ) for 
ZnS0.5Se0.5. 

On the basis of the transferability of the Tersoff potential (W. Sekkal, et al., 1998, W. Sekkal, et al., 19981), all 
the parameters for Zn S0.25Se0.75, and ZnS0.75Se0.25 have been kept constant except the cutt-off R and , which are 
adjusted to ensure the stability of each structure.  

All parameters are listed in Table 1 

Using Molecular dynamic calculations, the interactions are described for different concentrations by the the 
Tersoff potential. In our simulation, we assume that the system is treated as two components (ZnS and ZnSe). 
Indeed, ZnS and ZnSe are considered as an equivalent one-component system. Initially, ZnS and ZnSe are 
always located at the nodes of a zincblende structure with interaction via the Tersoff potential. The integral 
energy of the system is a sum of interactions between pairs of ZnS-ZnS, ZnSe-ZnSe, ZnS-ZnSe. 

In order to obtain more information about the structural, elastic and thermodynamic properties of ZnSxSe1-x we 
run molecular dynamics simulation using the Tersoff potential with 216 molecules. This simulation is carried out 
within the canonical NVT-ensemble where the control is investigated using Andersen’s method (H. C. Andersen, 
1980). 

The MD cell is formed in a cube of side L with 3 x3 x 3 FCC unit cells, where 216 molecules with 108 ZnSe and 
108 ZnS (molecules) are included. The periodic boundary conditions are applied. The molecular dynamics 
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routine is based on a fifth-order gear-predictor- corrector algorithm (G. W. Gear, 1971) of the Newtonian 
equations of motion using a neighbor list technique with a time step h  5.02 fs. After 100 ps, different properties 
are computed along the trajectory of the system in phase space.  

3. Results and discussion  

We display, in Figure.1 the pair distribution function g(r) for ZnS0.25Se0.75, ZnS0.5Se0.5 and ZnS0.75Se0.25 alloy. The 
results for the fourth peaks listed in Table 2 are in good agreement with the values in Ref. (W. Sekkal, et al., 
2000, K. Endo, et al., 1993). Thus, we confirm the stability of the structure during the simulation. In order to 
calculate the structural and elastic properties of ZnSxSe1-x, we plot in Figure.2 the variation of the cohesive 
energy with the volume for ZnS0.25Se0.75, ZnS0.5Se0.5 and ZnS0.75Se0.25 in the zincblende structure. The curves are 
fitted to the Murnaghan equation of state (F. D. Murnaghan, 1944) from which the equilibrium cohesive energy, 
the lattice parameter, the bulk modulus, and its derivative are obtained. 

From the results listed in Table 3, we notice the agreement of the lattice parameter with experiments (James E. 
Bernard and Alex Zunger, 1987), the accuracy is between 0.1 and 0.8. Our results of the bulk modulus are in 
good agreement with other calculations based on the Cohen’s relation (M. L. Cohen, 1985):    

        5.361.17  dB                                  (13) 

where d is the nearest-neighbor distance in A°, and B is the bulk modulus given in Mbar. Using this equation, we 
found good values of the bulk modulus for ZnS0.25Se0.75 (0.78 Mbar), ZnS0.5Se0.5 (0.82 Mbar), ZnS0.75Se0.25 (0.85 
Mbar) with an accuracy about 17 , 17  and 15  respectively 

As we see in Figure.3, the variation of B with concentration is quadratic and is given by the following equation: 

         2068.01474.0586.0)( xxMbarB                         (14) 

The quadratic term stands for the bowing parameter. This bowing is known to be an effect caused by disorder. 
Indeed, the disorder effect contributes in two different ways: 

i) The chemical disorder (contribution due to the compositional disorder in the anionic sublattice). 

ii) The volume deformation effect (contribution due to the compression and the dilatation of the two binary 
alloys into the ternary alloy volumes). 

According to van Vechten and Bergstresser (J. A. Van Vechten and J. K. Bergstresser, 1970), the disorder 
contribution (which is related to the difference of electronegativities of the alloyed atoms) plays a dominant role 
in determining the bowing parameter.  

In ZnSxSe1-x, the difference of electronegativities of S and Se atoms is equal to 0.1. Moreover, our results show 
that the bowing parameter is equal to 0.068. This value is close to the value found for Cu AgxI1-x (0.08) (W. 
Sekkal, et al., 2000). In Figure.4, we plot the lattice parameter for ZnSxSe1-x solid solution.We notice that for all 
concentrations (x = 0.25, x = 0.5, x = 0.75), the calculated lattice parameters are in good agreement with 
experimental results (James E. Bernard and Alex Zunger, 1987) for which the variation is linear and follow 
Vegard’s law (Vegard L. Z, 1921) very closely. In conclusion, we can say that there is an ideal mixing between 
ZnSe and ZnS. 

To compute elastic constants, we will follow the treatment established in Ref.( M.J. Mehl, 1993) which we shall 
outline here briefly. To compute C11-C12, we use a volume-conserving strain matrix: 
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which yields an energy change E = 2(C11 – C12) V/3 + O(3) where V is the volume. We compute the total 
energy at several values of  and drop the terms of order 3 and higher. Plotting E versus 2 yields a straight 
line with slope = (C11 – C12) V/3. 

Based on the fact that our results for C11 and C12 agree well with experimental results for ZnS and ZnSe (see 
Table 3), we have extended our calculations to predict these quantities for ZnS0.25Se0.75, ZnS0.5Se0.5 and 
ZnS0.75Se0.25. 
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We are interested now in calculating the thermodynamic properties of ZnSxSe1-x for x = 0.25, x = 0.5, and x = 
0.75. 

In MD simulation, the linear thermal expansion coefficient  can be computed directly from the definition: 

        
PTa

1

 a                                      (16) 

where a is the lattice parameter. Therefore, we consider the temperature variation of the lattice constant at zero 
pressure (see Figure.5) 

A molecular dynamics simulation is performed in an NVT ensemble at each temperature to equilibrate the 
system and then to determine the corresponding zero pressure lattice constant. 

From the slope of the total energy versus temperature curve (see Figure.6), we can estimate the specific heat of 
the system (A. Garcia and C. Penland, 1991) according to the following equation: 

Cv =
VT

E

                                      (17) 

Our calculations can be used to determine an approximate melting. Fine et al (M. E. Fine, et al., 1984) noticed 
empirically that the melting temperature and elastic constants of cubic materials are related by the approximate 
expression: 

KCMbarKKTm 300)591(553 11
1                      (18) 

Debye temperature is calculated from the bulk modulus using the empirical relation taken from Ref. (W. Sekkal, 
et al., 1998): 

)(42939.00062.24 karBD                          (19) 

All the predicted thermodynamic properties are listed in Table 3. 

Based on the fact that the values of D and Tf agree well with experimental calculations for ZnSe and ZnS, we 
have predicted these quantities for ZnSxSe1-x at x= 0.25, x = 0.5, and x = 0.75 using Equations (18) and (19). 
According to our results, we see that the Debye temperature increases with concentration (x) according to the 
following equation (see Figure. 7): 

2248.706.277 xxD                               (20) 

The specific heat for ZnS0.25Se0.75, ZnS0.5Se0.5 and ZnS0.75Se0.25 alloy is around 24.6 J K-1.mol-1. This constant 
value corresponds to the classical Dulong-Petit result ( 24 J K-1.mol-1) which is obtained at high temperatures 
for all solids (W . A. Harisson, 1980). 

4. Conclusion 

We have presented the results of molecular dynamics calculations, based on the well-tested Tersoff potential. 
Structural, elastic and thermodynamic properties are performed at 0.25, 0.5 and 0.75. We found also, that the 
lattice parameter and the bulk modulus varies linearly with alloy concentration and the results are in good 
agreement with experiments. However, the apparition of a bowing in the variation of the bulk modulus with 
concentration can be due to the volume deformation effect and the structural relaxation has a minor effect. We 
have predicted elastic and thermodynamic properties such C11, C12, heat capacity, melting point, Debye 
temperature and linear thermal expansion coefficient for ZnS0.25Se0.75, ZnS0.5Se0.5 and ZnS0.75. 
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Table 1. The adjusted Tersoff parameters for ZnSxSe1-x (x = 0.25, 0.5, 0.75) 

 ZnS0.25Se0.75 ZnS0.5Se0.5 ZnS0.75Se0.25 

A (eV) 2756.03 2756.03 2756.03 

B (eV) 210.0 210.0 210.0 

(A° -1) 3.0599 3.0599 3.0599 

μ(A° -1) 1.7322 1.7322 1.7322 

 1.1000 10-6 1.1000 10-6 1.1000 10-6 

n 0.78734 0.78734 0.78734 

c 100390.0 100390.0 100390.0 

d 16.217 16.217 16.217 

h -0.59825 -0.59825 -0.59825 

R (A°) 3.00725 3.00725 3.00725 

D(A°) 0.15 0.15 0.15 

 0.9747 0.9854 0.9975 

Table 2. The values of peak distances and coordinate numbers of pairs for ZnS0.25Se0.75, ZnS0.5Se0.5, 
ZnS0.75Se0.25. 

 ZnS0.25Se0.75 ZnS0.5Se0.5 ZnS0.75Se0.25 

1er  pic     Distance (A°)  
Nombre de paires:            

2.40 (2.381)a    
4 

2.70 (2.405)a 
3.86  4      

2.35(2.431)a   
3.98  4     

2ème pic    Distance (A°)      
Nombre de paires:            

3.95 (3.88)a   
12        

3.92 (3.92)a     
11.96  12     

3.88 (3.95)a

11.93  12 

3ème pic    Distance (A°) 
Nombre de paires:            

4.63(4.55)a     
12 

4.58 (4.60)a     
11.91  12     

4.54 (4.65)a

11.93  12 

4ème pic    Distance (A°)  
Nombre de paires:            

5.58 (5.49)a     
6 

5.51(5.55)a     
5.97  6      

5.47(5.61)a

5.99  6 
a Ref (W. Sekkal, et al., 2000) 

Table 3. Structural and thermodynamic properties of ZnS0.25Se0.75,  ZnS0.5Se0.5,  ZnS0.75Se0.25 

 
 ZnSe ZnS0.25Se0.75 ZnS0.5Se0.5 ZnS0.75Se0.25 ZnS 

a (A°) 5.667a 5.6b, 5.605c 5.52b, 5.54c 5.46b, 5.492c 5.406a 
B (Mbar) 0.59a, 0.75d 0.64b, 0.78d 0.68b, 0.82d 0.72b, 0.85d 0.816a, 0.89d 

B’ 5.41a 3.54b 3.11b 3.65b 4.73a 
C11(Mbar) 0.72a 0.644b 0.682b 0.753b 0.98a 
C12(Mbar) 0.52a 0.638b 0.679b 0.748b 0.73a 
D (K) 277b 299b 316b 336b 372b 
Tm (K) 978b 933b 956b 998b 1132b 

Cv(J/K.mol) 23.54b 25.6b 26.16b 25.53b 24.02b 
(10-5 K-1) 1.17b 1.12b 1.4b 0.11b 1.22b 

 
a (F. Benkabou, et al., 2000), b [DM], c (James E. Bernard and Alex Zunger, 1987), d(M. L. Cohen, 1985). 
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Figure 1. The pair distribution function of:  

(a) ZnS0.25Se0.75; (b) ZnS0.5Se0.5; (c) ZnS0.75Se0.25 
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Figure 2. the cohesive energy of the system as a function of volume for: 

(a) ZnS0.25Se0.75; (b) ZnS0.5Se0.5; (c) ZnS0.75Se0.25 
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Figure 3. The bulk modulus versus concentration of ZnSxSe1-x. Squares correspond to our results 
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Figure 4. The lattice parameter versus concentration of ZnSxSe1-x. The solid line is a prediction of ideal 

mixing according to Vegard’s law. Squares correspond to our simulation 
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Figure 5. The lattice parameter as a function of temperature for:  

(a) ZnS0.25Se0.75; (b) ZnS0.5Se0.5; (c) ZnS0.75Se0.25 
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Figure 6. The total energy as a function of temperature for:  

(a) ZnS0.25Se0.75; (b) ZnS0.5Se0.5; (c) ZnS0.75Se0.25 
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Figure 7. Debye temperature versus concentration for ZnSxSe1-x 


