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Abstract 
The essence of electric charge has been a mystery. So far, no theory has been able to derive the attributes of 
electric charge, which are: bivalency, stability, quantization, equality of the absolute values of the bivalent 
charges, the electric field it creates and the radii of the bivalent charges. Our model of the electric charge and its 
field (this paper) enables us (in additional papers), for the first time, to derive simple equations for the radii and 
masses of the electron/positron muon/anti-muon and quarks/anti-quarks. These equations contain only the 
constants G, c, ℏ and α (the fine structure constant). The calculated results based on these equations comply 
accurately with the experimental results. In this paper, which serves as a basis for the other papers, we define 
electric charge density, based on space density. This definition alone, without any phenomenology, yields the 
theory of Electrostatics. Electrostatics together with Lorentz Transformation is known to yield the entire 
Maxwell Electromagnetic theory. 
Keywords: Electric Charge, Electric Field, Space Lattice, Electromagnetism 
1. Introduction 
In our model, of the electric charge and its field, a positive elementary electric charge is a contracted zone of 
space, whereas a negative elementary electric charge is a dilated zone of space. Relating to space as a lattice 
(cellular structure), we define Space Density ρ as the number of space cells per unit volume (denoted ρ0 for 
space with no deformations). Based on this we define (postulate, invent) Electric Charge Density as: 
q = 1/4π ∙ (ρ - ρ0)/ρ, [q] =1. This charge density is positive if ρ > ρ0 and negative if ρ < ρ0. 

Electric charge, in a given zone of space τ, is then: τqdQ
τ
= , [Q] = L3. 

Our definition of electric charge density alone yields electrostatics, without any phenomenology, and together 
with the Lorentz Transformation - the entire Maxwell theory. This result encourages us to further pursue, in 
additional papers, our idea; an effort that yields important results, which some of them are presented below. 
Note that our definition of “charge density” is axiomatic. This approach is in the spirit of Einstein (1933) that: 
the axiomatic basis of theoretical physics cannot be extracted from experience but must be freely invented… 
We consider charge to be a deformed zone of space, and since the geometry of both deformed spaces and bent 
manifolds is Riemannian, we can attribute curvature to an electric charge. This new idea, of charge as curved 
space, enables us to use the theory of General Relativity (GR) in our derivations. These derivations, in additional 
papers, yield the attributes of elementary particles, like theirs masses. The mass of the electron is an example: 
Electron/Positron Mass 

 Me = ୱమ√ଶ ஠( ଵା஠ ஑)  ∙ √Gିଵαℏcିଷ, s = 1, [s] = LT-1  

For the electron/positron charge, which is a white/black hole, s is light velocity at the event horizon, as the 
far-away observer measures, Susskind and Lindesay (2005).  
Me (calculated) = 0.91036 ∙10-27gr  
Me (measured) = 0.910938356(11) ∙10-27gr 
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This is a deviation of 0.06% from the measured CODATA value, Olive (2014). 
This result speaks for itself, and justifies our axiomatic approach.  
A dimensionality check: [G-1] = ML-3T2, [α] = 1, [ℏ] = ML2T-1, [c-3] = L-3T3. Thus:  
M= [s2√Gିଵαℏcିଷ ] = L2T-2(ML-3T2∙ML2T-1∙L-3T3)1/2 =L2T-2(M2L-4T4)-1/2 = L2T-2ML-2T2 = M 
Note that the Standard Model of elementary particles and String Theory, wrongly consider elementary particles 
to be alien to space, point-like or string-like, and structureless. This is why both theories fail to derive and 
calculate these masses and radii. 
1.1 On Our Electromagnetism (EM) 
In this paper we derive only Electrostatics. The entire theory of electromagnetism (EM) and the extension of the 
GR field equation to incorporate the contribution of charge to curvature appear as separate papers. 
Our EM utilizes the dimensions of length L (cm) and time T (sec) only. Thus, each physical quantity of our EM 
has a dimensionality, which is LxTy. Using GR we can establish quantitative equivalence between our system and 
the conventional system of units. 
By relating the field energy density to charge density our EM becomes non-linear, which is its specificity. Note 
that QED is also a non-linear theory. 
The issues of structure, stability and quantization of an elementary charge are discussed in another paper. Note 
that our EM is applicable for both a single elementary charge and an ensemble of elementary charges. Note also 
that EM waves, in our theory, are simply space transverse vibrations. 
1.2 Space as a Lattice 
Our definition of Electric Charge Density is based on the concept of space density. Space density is related to the 
cellular structure of space; relating space density to a continuum is not prohibitive but problematic. Attributing a 
cellular structure (a lattice) to space explains its Hubble expansion, its elasticity (see 1.3) and introduces a cut-off 
in the wavelength of the vacuum-state spectrum of vibrations. Without this cut-off, infinite energy densities arise. 
The need for a cut-off is addressed by Sakharov (1968) and Misner et al. (1970). The Bekenstein (1973) Bound 
sets a limit to the information available about the other side of the horizon of a black hole. And Smolin (2001) 
argues that: “There is no way to reconcile this with the view that space is continuous for that implies that each 
finite volume can contain an infinite amount of information”. A review, relevant to our discussion, appears in a 
paper by Amelino-Camelia (2002). 
1.3 The Elastic Space 
We relate to space not as a passive static arena for fields and particles but as an active elastic entity. Physicists 
have different, sometimes conflicting, ideas about the physical meaning of the mathematical objects in their 
models. The mathematical objects of GR, as an example, are n-dimensional manifolds in hyper-spaces with more 
dimensions than n. These are not necessarily the physical objects that GR accounts for and n-dimensional 
manifolds can be equivalent to n-dimensional elastic spaces. This equivalence allows us to use GR, and also 
relate to our own space as an elastic 3D space. Rindler (2004) uses this equivalence to enable visualization of 
bent manifolds, whereas Steane (2013) considers this equivalence to be a real option for a presentation of reality. 
Callahan (1999), being very clear about this equivalence, declares: “…in physics we associate curvature with 
stretching rather than bending”. After all, in GR gravitational waves (2016) that move at the speed of light are 
space waves and the attribution of elasticity to space is thus a must. 
Note that our adoption of Riemannian geometry means: 
The deformation of space is the change in size of its cells, Barak (2019). The terms positive deformation and 
negative deformation, around a point in space, are used to indicate that space cells grow or shrink, respectively, 
from this point outwards. Positive deformation is equivalent to positive curving and negative deformation to 
negative curving. 
1.4 Recent Papers on Electric Charge 
“Nonlinear models of electric charge and magnetic moment” Bersons and Veilande (2015) 
“The enigmatic electron” Wilczek (2013) 
“Singularity-free model of electric charge in physical vacuum: Non-zero spatial extent and mass generation”  
Dzhunushaliev and  Zloshchastiev (2013) 
“Duality and ‘particle’ democracy” Castellani (2016) 
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Although these papers relate to different aspects of our subject, none present a similar idea to ours. 
2. Electric Charge 
2.1 Electric Charge Density 
We define the electric charge density as: 

 ρ
ρ−ρ

π
= 0

4
1q , [q] = 1 (1) 

The factor 1/4π is introduced for no other reason, than to ensure resemblance to the Gaussian system. 
The charge density is positive if ρ > ρ0. 
The charge density is negative if ρ < ρ0. 
Necessarily, only two types of electric charge exist, positive and negative. Let n be the number of space cells in a 
given volume V. Since n = ρ0V and also n = ρV’ we get: 
V=n/ρ0, V’=n/ρ, Hence: 

 (V’−V)/V = - (ρ - ρ0)/ρ (2) 

V’ > V is dilation, V’< V is contraction. 
2.2 Electric Charge Q in a Given Volume τ 
The Electric Charge in a given zone of space τ is: 

 
τqdQ

τ
=

 
 

Electric charge has the dimensions of volume [Q] = L3 

For the spherical symmetric case where dτ = 4πr2dr, for a given r, the radius of the charge Q, we get the result: 
Q = ׬ q4πrଶ୰଴ dr = 1/3∙ r3(1−ρ0/ρ). Thus ρ > ρ0 gives Q > 0 whereas ρ < ρ0 gives Q < 0. 
For us, outside observers, positive charge in a given spherical zone of space with radius r, means more space 
cells in the zone than in an un-deformed space (contraction), whereas negative charge means less space cells in 
the zone than in an un-deformed space (dilation). Using Riemannian geometry, we relate curvature to this space 
deformation and open the way to the application of GR in issues related to charge and electromagnetism in 
general. 
Note that the equality |Q+| = |Q-|, see Appendix A, of the absolute values of the bivalent elementary charges 
means, according to the integral above, that (1- ρ0/ρ+) = - (1- ρ0/ρ-) and hence 2/ρ0 = 1/ρ+ + 1/ρ- . Note that both 
ρ+ and ρ- are functions of r and not constants. 
Figure 1 suggests simple models of positive and negative charges, both as “spheres” of “radii” r0+ and r0 , see 
Appendix B. The contracted space in the sphere with radius r0+, our Q+, contracts space around it (its field) 
whereas the dilated space in the sphere with radius r0-, our Q-, dilates space around it (its field). In this model, of 
charge and its field, there is no physical separation between the particle and its field, and the integral of ρ over 
the entire space, for two bivalent elementary charges together, is zero. Note that, in the field of a positive charge, 
space is also curved positively. Similarly, in the field of a negative charge, space is curved negatively. Hence the 
field equation is non-linear (charge is attributed to the field), as is the field equation of gravitation (energy/mass 
is attributed to the field). 
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Figure 1. A Charge and its Field 

 
 
3. The Elastic Spatial Vector u and the Electric Field E 
By relating to space as an elastic media we can use the theory of elasticity and its Elastic Displacement Vector 
 u = r’ - r. 
In Appendix C we show that: 

 ρ
ρ−ρ−=⋅ 0u∇

 (C2) 

Thus, according to (1): 

 ∇ ⋅ u = - 4πq (3) 

By defining the Electric field vector E as: 

 E = −Hu        H = 1    [H] =T -2    [E] = LT -2 (4) 

equation (3) becomes the known equation: 

 ∇ ⋅ E = 4πHq (5) 

Note that any deformation (strain) in space is related to a stress; hence the introduction of H. 
E expresses, therefore, the tension in space due to a deformation in it. 
For a positively charged particle, E points outwards and for a negatively charged particle inwards, as it is in the 
Maxwell theory of electrostatics (see Figure 2 in Appendix C). 
4. Coulomb’s Law 

Gauss’s theorem is: dσuu ⋅=τ⋅  στ
d∇ . For a spherical surface with radius r we get: 2

r r4u π⋅=⋅σ dσu  

and since Q4qdH4d πΗ=τπ=τ⋅  ττ
u∇ , we get: r

r
u 3

Q=  or: 

 
r

r
E 3

HQ=      Coulomb’s Law (6) 

ρ 

 
r 

ρ 

r
0
 

ρ
0
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ρ
0
 

r
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5. The Electric Field E and Scalar Potential ϕ 
Every vectorial field can be decomposed into a field that is a gradient of a scalar potential (the polar part) and a 
field that is a vector potential (the axial part), subject to the boundary condition 0→E  at infinity. Hence: 

 ΑE ×+ϕ−= ∇∇  (7) 

In the simple static case for the electric field: 

 ϕ−= ∇E  (8) 

and, in case of spherical symmetry, in spherical coordinates: 

 
( )

r
E rr ∂

ϕ∂=ϕ−= ∇
 (9) 

and since: 2r r
HQE = , we get: 

 r
HQ=ϕ        [ϕ] = L2T -2 (10) 

From: Ηq4π=⋅ E∇  and ϕ−= ∇E  we get Hq4π−=ϕ⋅∇∇  or: 

 
4 HqΔφ = − π       Poisson’s equation (11) 

In the absence of charge: 

 0=ϕΔ                 Laplace equation (12) 

We can modify equation (11) to incorporate the charge density of the field, which is equivalent to the field energy 
density. This modification turns (11) into a non-linear equation that resembles the non-linear equation of 
gravitation but it is out of the scope of this paper. 
6. The Electrostatic Force 

From (3) u⋅∇  = 4πq  we get  u⋅
π

= ∇
4
1q , or in tensor notation  

j

j

x
u

4
1q

∂
∂

π
=

 

(Appendix D relates uij to the metric element gij). Multiplying both sides of (3) by u gives: 

 
uuu ⋅

π
= ∇

4
q

 (13) 
The left-hand term multiplied by H is denoted by f. 

 f = qHu or fi = qHui (14) 

At this stage, f is just a symbol. After a few steps, it is identified as the electrostatic force density. Substituting the 
tensor notation for u, in Equations (13) and (14) gives: 
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










∂
∂−

∂
∂

π
=

∂
∂

π
=

∂
∂

π
=

j

i
j

j

ji

j

j
ii

j

j
i x

uu
x
uu

4
H

x
u

u
4
Hu

x
u

4
Hf  hence: 

 






 −

∂
∂

π
= ij

2
ji

j
i δu

2
1uu

x4
Hf

 (15) 

where δij is the Kroneker Delta defined by δij = 1  for i = j,  δij = 0  for i ≠ j, and 2
3

2
2

2
1

2 uuu ++=u . Hence fi 
may be regarded as derived from a tensor: 







 δ−

π
= ij

2
jiij 2

1uu
4
HP u . And indeed: 

j

ij
i x

P
4
Hf

∂
∂

π
=  is identified as the force per unit volume and Pij as the 

strain tensor. 

If the x-axis is chosen parallel to a line of force at any point, then uy = uz = 0 and ux = u, and: 

2
zzyyxx 8

HPPP u
π

=−=−= . 

Thus the pressure perpendicular to the surface is equal to the energy density. 
From (4), E = -Hu, we get the expression for the energy density in the field: 

 

2

8
1 E
πΗ

=∈
 (16) 

Since f is identified as the force per unit volume, we can return to the expression f = qHu, and recognize the 
electrostatic force density: 

Ef q=  [f] = LT -2 and the electrostatic force: EF Q=  [F] = L4T -2 

7. Coulomb’s Force Law 
Equation (16) expresses the field energy density of a system of charges. Hence: 

τ⋅
π

= τ
d

H8
1U 2E  where E is the field produced by these charges, and the integral goes over all space. 

Substituting  E = -∇ϕ, U can be expressed as follows: 

 

ττ

τ⋅∇ϕ
π

+τϕ⋅∇
π

=
π

= d
H8

1d
H8

1dτ
H8

1U
τ

2 EEE
  

According to Gauss’s theorem, the first integral is equal to the integral of ∇⋅ϕE over the surface bounding the 
volume of integration, but since the integral is taken over all space and since the field is zero at infinity, this 
integral vanishes. Substituting (5), ∇⋅E = 4πHq , in the second integral, gives the expression for the energy of a 

system of charges: dτq
2
1U

τ
⋅ϕ=   For a system of point charges, Qi we can replace the integral with a sum over 



apr.ccsenet.org Applied Physics Research Vol. 11, No. 4; 2019 

35 

the charges  ϕ=
i

iiQ
2
1U  where iϕ  is the potential of the field produced by all the charges, at the point 

where the charge iQ is located. From Coulomb’s law: 


≠

=ϕ
ji ij

j
i r

HQ
 where ijr  is the distance between the charges Qi, Qj we get: 


≠

=
ji ij

ji

r
QHQ

2
1U  In particular, the energy of interaction of two charges is: 

ij

ji

r
QHQ

U =  and the force is: 2
21

12
r

QHQ
r
UF =

∂
∂=  or: 

 F= 3
21

12
r

QQ
H r12         Coulomb’s force law (17) 

8. Conclusions 
Our definition of electric charge density, based on the density of the elastic space lattice, enables us to relate to an 
elementary charge not as point-like and not as a string, which are alien to space, but as a finite zone of contracted or 
dilated space. Necessarily, elementary particles are also of finite size and have a structure. This understanding 
enables us to derive and calculate the elementary charge/particles attributes. 
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Appendix A: On the Equality |Q+| = |Q-| 
In the author’s GeometroDynamic Model (GDM) of Reality we model the photon as a confined oscillating dipole 
with its field. This dipole is an oscillation of the bivalent elementary charges, which in the pair production process 
are converted into the stable bivalent elementary charges of the electron and positron (as it is for other particles). 
The photon in the GDM holds all the basic features that appear in all the other elementary particles. 
Pair production is the creation of an elementary particle and its antiparticle, by the interaction of an energetic 
photon with matter. The electron and positron pair is an example. 
In the literature and also in the GDM, a photon is considered a transverse wavepacket whereas an elementary 
charge is considered in the GDM a longitudinal circulating wavepacket of contracted or dilated space. Pair 
production is a mode conversion of the transverse wavepacket (the photon) into two longitudinal wavepackets 
rather than an extraction of an electron from Dirac’s sea. This conversion takes place during the circulation of an, 
energetic enough, photon around a proton. 
Appendix B: The “Spherical” Elementary Electric Charge and its “Radius” 
We model the elementary charge and its field, see Figure 1, as a strong deformation of space - contraction or 
dilation - three dimensionally symmetric - around a point. There is no distinct border to this strongly deformed 
zone of space and its outside diminishing deformation, which is the field, that extends to infinity. Our model, 
however, requires for derivations and calculations a definition of a border of radius r that “distinguishes” between 
the charge and its field. The self-energy U of a charge Q, accumulated in a sphere with radius r is U = Q2/2r. This 
U, however, is the continuous-space strain energy of both the charge and its field. We set a virtual border, of radius 
r, to artificially divide equally between the space zone of the charge energy and that of its field. This is our 
definition of r. Hence: 
r = Q2/4U 
However, for calculating the total energy U, of the charge and its field, and the mass M of the electron we use the 
relations: U = Q2/2r and M = U/c2. 
At this point it is interesting to relate to the long-standing open issue, addressed by Feynman (1965) and others: 
Is the Electrostatic Energy in the Charge or in the Field? 
The energy needed to create a charge Q of radius r, by bringing in from infinity infinitesimal amounts of charge, 
despite repulsion, is: 
U = Q2/2r 
The energy density of the electrostatic field E = Q/r2 is: 
ϵ = 1/4π E2 

and the entire energy in the field is also: U = ׬ ϵdτ ஶ௥  = Q2/2r 
Thus, we ask where is the energy, in the field or in the charge? 
In our model there is no separation between the charge and its field; they are a continuous deformation of space - 
Einstein’s vision. The above calculated energy, in both cases, is the same total energy of the charge and its field. 
Thus, r can only be considered as an artificial “border” between the two. We define - freely invent (Einstein’s 
expression) - this r to be a virtual border for which on both of its sides resides the same half of the above U. 
Hence, for r calculation we take r = Q2/4U. 
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Note that U is the space energy of strain, be it contraction or dilation. 
Appendix C: Contraction and Dilation of Space, and the Strain Tensor uij 

The aim of this appendix is to prove that: 
ρ

ρ−ρ−=⋅ 0u∇  

Figure 2 shows the position vector r of a spot, p, in space, with no strain. When stress is applied on space and a 
deformation occurs, the location of p becomes p’ with a position vector r’. The vector u is the Elastic Displacement 
Vector (theory of Elasticity). The origin in Figure 2 is arbitrary and does not play any role in our discussion. 
 

 
Figure 2. The Displacement Vector u in the Elastic Spac 

 
In this Appendix, we show that the divergence of the elastic displacement vector u⋅∇  in an elastic medium 

equals the relative change in the volume 
dV

dVdV' −  of a strained medium. 

The following discussion is based on a derivation made by Landau and Lifshitz (1959). 
u = r' - r can be denoted by its components: 
ui = xi' - xi Let dl' be the deformed distance between adjacent points, since: 

( )2
ii

2
i

22
i

2
iii dudx'dx'dldxdldudx'dx +===+=  

by the substitution of k
k

i
i dx

x
udu 







∂
∂=  above we get: 

lk
lk

ii
ki

i

i22 dxdx
xx
uudxdx

x
u2dldl'

∂∂
∂∂+

∂
∂+=  Since the summation is taken over both suffixes i and k in the 

second term on the right, we get: 

ki
i

k

k

i dxdx
x
u

x
u









∂
∂+

∂
∂

 

In the third term, we interchange the suffixes i and l.  Then dl'2 takes the final form: 

kiik
22 dxdx2udldl' +=  where the strain tensor uik is defined as: 

 








∂∂
∂∂+

∂
∂+

∂
∂=

ki

ll

i

k

k

i
ik xx

uu
x
u

x
u

2
1u

 (C1) 

on its relation to the Metric Tensor see Appendix D. 
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If ui and their derivatives are small, we can neglect the last term as being of the second order of smallness.  Thus, 
for small deformations, the strain tensor is given by: 









∂
∂+

∂
∂=

i

k

k

i
ik x

u
x
u

2
1u  We see that it is symmetrical: uik = uki 

uik, can be diagonalized, like any symmetrical tensor, at any given point. Thus, at any given point, we can choose 
coordinate axes, the principal axes of the tensor, in such a way that only the diagonal components u11, u22, u33 of the 
3D tensor uik are different from zero. These components, the principal values of the strain tensor, are denoted by 
u(1), u(2), u(3). We should remember that, if the tensor uik is diagonalized at a specific point in the body, it is not, in 
general, diagonal at any other point. 
If this strain tensor is diagonalized at a given point, the element of length near it becomes: 

( )
( )( ) ( )( ) ( )( ) 2

3
32

2
22

1
1

kiikik
2

dx2u1dx2u1dx2u1

dxdx2uδdl'

−+−+−=

+=
 

We see that the expression is the sum of three independent terms.  This means that the strain in any volume 
element may be regarded as composed of independent strains in three mutually perpendicular directions, namely 
those of the principal axes of the strain tensor. Each of these strains is a simple dilation, or contraction, in the 

corresponding direction: the length dx1 along the first principal axis becomes ( )( ) 1
1

1 dx2u1dx' += , and 

similarly for the other two axes.  The quantity ( )( ) 12u1 1 −+  is consequently equal to the relative extension 

(dx'i - dxi)/dxi along the ith principal axis. The relative extension of the elements of length along the principal axes 

of the strain tensor, at a given point, is, to within higher-order quantities ( )( ) ( )ii u12u1 ≈−+ , i.e., they are the 

principal values of the tensor uik. 

Let us consider an infinitesimal volume element dV, and find its volume dV' after a deformation. To do so, we take 
the principal axes of the strain tensor, at the point considered, as the coordinate’s axes. Then the elements of length 

dx1, dx2, dx3 along these axes become, after the deformation, ( )( ) 1
1

1 dxu1dx' += , etc. The volume dV is the 

product dx1dx2dx3, while dV' is dx'1dx'2dx'3. Thus ( )( ) ( )( ) ( )( )321 u1u1u1dVdV' +×++= . 

Neglecting higher-order terms, we therefore have ( ) ( ) ( )( )321 uuu1dVdV' +++= . The sum 

( ) ( ) ( )321 uuu ++  of the principal values of a tensor is well known to be invariant, and is equal to the sum of the 

diagonal components uii = u11 + u22 + u33 in any coordinate system Thus: 

dV' = dV (1 + uii) or: iiu
dV

dVdV' =−
 or: u⋅=− ∇

dV
dVdV'  and according to (2) we get: 

 ρ
ρ−ρ−=⋅ 0u∇

 (C2) 

Appendix D: The Small Deformation Strain Tensor and the Fundamental Metric Tensor 
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In the peer reviewed paper by Palacios (2015) demonstrate that the small deformation strain tensor, see (C1), 
could be used as a fundamental metric tensor, instead of the usual fundamental metric tensor. We quote their 
conclusion: 
“Through the present paper, it was possible to demonstrate that the small deformation strain tensor could be 
used as a fundamental metric tensor, instead of the usual fundamental metric tensor. Also, it was possible 
to prove that from that tensor, not only other mathematical structures could be constructed, but also another 
fundamental tensor was obtained; that was to say, we had constructed two of them, uμυ, and Bμυσρ. It is through 
these tensors that the gap between pure geometry and physics is bridged. In particular, uμυ relates the observed 
interval ds to the mathematical coordinate specification dxμ. Also, the uμυ appear as the potentials of the inertial 
field {6}. Therefore, it is reasonable to assume that, in the presence of a gravitational field, the uμυ is again the 
potential which determines the accelerations of free bodies; in other words, the uμυ is the potential of the 
gravitational field. Thus, a stage has been reached at which the results obtained can be applied to the theory of 
gravitation {4}. However, that task that would not be repeated here was established by Albert Einstein, and 
finally formulated by him in 1916, as probably the most beautiful of the physical theories.” 
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