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Abstract:
This work studies the determination of analytical solution and cycle limite in nonlinear chemical oscillations gouverned by
a forced modified Van der Pol-Duffing oscillator. We considered the dynamic of nonlinear chemical systems subjected to
an external sinusoidal excitation. The first order appoximative solution of the oxcillator is determined using the Lindstedt’s
perturbation method. The limit cycle number of the oscillator is found as well as the effect of certain parameters of the
model on cycle limit analyzes. The harmonic balance method is used to find the amplitudes of the oscillatory states.The
effect of the constraint parameter β of the oscillator are observed on amplitude-response curves. Numerical simulations
are used to validate the results obtained by analytical methods.
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1. Introduction
Over the last three decades, the interdisciplinary field of nonlinear dynamics has made enormous progress. The study of
nonlinear oscillations is of great interest in several scientific fields (Boissonade & De Kepper, 1980; Epstein & Showalter,
1996). In nonlinear chemical dynamics, she has proven that some chemical oscillations can be modeled by oscillators. The
search for the analytical solution of the equations and dynamic phenomena of these oscillators is sometimes complicated
given their complexity. In this paper, the determination of the analytical solution and the limit cycle in some chemical
oscillations modeled by the modified Van Der Pol-Duffing oscillator is performed using appropriate methods. We analyze
the effects of the different parameters of this oscillator on the limit cycle. Subsequently, the effects on certain dynamic
phenomena of the parameter β which marks the difference between this oscillator and the classic Van Der Pol-Duffing
oscillator is also analyzed.
The organization of the paper is as follows : The mathematical modeling of nonlinear chemical dynamics influenced by
external periodic excitation forces is given in Section 2. Section 3 presents the analytical solution, the limit cycle of the
modified Van Der Pol-Duffing oscillator as well as the effect of the parameter β on certain dynamic phenomena of the
oscillator. The conclusion is given in the last section.

2. Model and equation of oscillations
This work takes into account all nonlinear chemical systems as a kinetic example which can be described by the following
equations (Boissonade, J and al.,1980, Epstein, I R and al.,1996, & Olabodé, D. L. and al., 2018)

A
k1−→ X, (1)

B + X
k2−→ 2X, (2)

D + X
k3−→ products, (3)

X
k4−→ X′, (4)

B + X′
k5−→ Y, (5)

Y
k6−→ X′ + products. (6)

Based upon the laws of mass action and conservation and assuming that the sink of the product is a first order reaction, the
self-oscillations in some nonlinear chemical systems can be modelised by the following single second order differential
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equation (Olabodé, Miwadinou, Monwanou, & Chabi Orou, 2018; Miwadinou et al., 2018)

ζ̈ + µ(1 − ζ2)ζ̇ + αζ + γζ3 + β = 0 (7)

where ζ is proportional to the concentration of species X and µ, α, γ, β respectively denote the damping coefficient, linear
and cubic nonlinear restoring parameters. In general if α < 0 the system has three steady states and single one for α > 0.
In the rest of this work, we consider the case of α > 0. Previous research has shown the existence of a richness of complex
dynamics behaviors can be obtained when dissipative self-oscillators are submitted to external forcing. By assuming that
the model is subjected to an external sinusoidal excitation E cosΩt, Eq. (7) becomes a nonlinear single second order
differential equation on the form

ζ̈ + µ
(
1 − ζ2

)
ζ̇ + αζ + γζ3 + β = E cosΩt. (8)

where ζ, ζ̇ and ζ̈ are the displacement, velocity and acceleration respectively.F and Ω are respectively the amplitude and
the frequence of the excitation.

3. Analytical solution and limit cycle

3.1 Amplitudes and frequencies of limit-cycles in autonomous chemical oscillations
In this subsection, we consider the case where the model is not influenced by an external excitation (E = 0) and our
purpose is to find the amplitudes and frequencies of the limit cycles.Using the Lindsted perturbation method (Lam, 1997;
Rand, 2005), it is interesting to set τ = ωt whereω is an unknown frequency, to allow an interaction between the frequency
and the amplitude.The approximate periodic solution ζ(τ) of equation (8) without external force can be written as follows:

ζ(τ) = ζ0(τ) + µζ1(τ) + µ2ζ2(τ) + ..., (9)

where the functions ζ j( j = 0, 1, 2, ...) are periodic functions of τ1 of period 2π.Furthermore, the frequency ω can be
defined as follows:

ω = ω0 + µω1 + µ
2ω2 + ..., (10)

where the frequencies ω j are unknown constants at this point.We put γ = µγ0 and β = µβ0. By introducing the expression-
s(9) and (10) in Eq.(8) and equating the coefficients of µ0, µ1 and µ2 to zero, we find the following equations at different
orders of µ:
Order µ0

ω2
0ζ̈0 + αζ0 = 0 (11)

Order µ1

ω2
0ζ̈1 + αζ1 = −2ω0ω1ζ̈0 − ω0(1 − ζ2

0 )ζ̇0 − γ0ζ
3
0 − β0 (12)

Order µ2

ω2
0ζ̈2 + αζ2 = −(ω2

1 + 2ω0ω2)ζ̈0 − 2ω0ω1ζ̈1 − ω1(1 − ζ2
0 )ζ̇0 − ω0(1 − ζ2

0 )ζ̇1 + 2ω0ζ0ζ1ζ̇0 − 3γ0ζ
2
0ζ1 (13)

The unknown quantities in the above equations are determined using the following characteristics of functions ζ j:

ζ j(τ + 2π) = ζ j(τ) and ζ̇ j(0) = 0; j = 0, 1, 2. (14)

After solving Eq.(11) and using conditions (14), we have

ζ0 = A cos(
√
ατ) (15)

ω0 =
√
α (16)

where A is the amplitude of the limit cycle. The introduction of the solution Eq. (15) and the relation (16) in Eq. (12)
leads to:
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ζ̈1 + ζ1 = (2ω1A
√
α − 3γ0A3

4α
) cos(

√
ατ) + (1 − A2

4
)A sin(

√
ατ) − γ0A3

4α
cos(3

√
ατ) − A3

4
sin(3

√
ατ) − β0

α
(17)

The secularity conditions on this last equation give the following equation satisfies by the amplitude A of the limit cycle:

1 − A2

4
= 0, (18)

and

ω1 =
3γ0A2

8α
√
α
. (19)

Thus, a general expression for a periodic solution of Eq.(17) can be written as follows:

ζ1 = A1 cos(
√
ατ) + A2 sin(

√
ατ) +C1 cos(3

√
ατ) +C2 sin(3

√
ατ) +C (20)

with

A1 = 0, (21)

A2 =
A(4 − A2)
4(1 − α)

,

C1 =
γ0A3

4α(9α − 1)
,

C2 =
A3

4(9α − 1)
,

C = −β0

α

Finaly,

ζ1 =
A(4 − A2)
4(1 − α)

sin(
√
ατ) +

γ0A3

4α(9α − 1)
cos(3

√
ατ) +

A3

4(9α − 1)
sin(3

√
ατ) − β0

α
(22)

The secularity conditions on equation Eq.(13) after the introduction of the solutions Eq. (15), Eq. (22) and the relations
(16), (19) in equation leads to:

ω2 = −
9γ2

0A4

128α3
√
α
− (4 − A2)2

32(α − 1)
√
α
− A4

32(9α − 1)
√
α
+

3γ2
0A4

32α2(9α − 1)
√
α
. (23)

35α − 3
12(9α − 1)

A2 − 1 = 0 (24)

So that, the solution of Eq.(7) without the external excitation can be approximated by

ζ(t) = − β
α
+ A cos(ω

√
αt) +

γA3

4α(9α − 1)
cos(3ω

√
αt) + µ{A(4 − A2)

4(1 − α)
sin(ω

√
αt) +

A3

4(9α − 1)
sin(3ω

√
αt)} + O(µ2) (25)

where the frequency ω is given by

ω =
√
α +

3γA2

8α
√
α
+ µ2ω2 + O(µ3). (26)

The resolution of Eq.(18) gives a single possible value for the amplitude of the limit cycle (A = 2). We therefore note that
the chemical model considered presents in its dynamics a single limit cycle. The limit cycle of the model is illustrated
using the analytical solution given by Eq.(25) and a direct numerical simulation of Eq.(7) (see Fig.1). The evolution of
the solution ζ(t) when the time t varies is also illustrated (see Fig.2). It is noticed a good agreement for the comparison
between the curve obtained analytically and that obtained by numerical simulation. We therefore retain that the analytical
solution found for Eq.(8) without external force approaches the exact solution of this equation very well and that the limit
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Figure 1: Phase portraits of the one limit cycle with the parameters µ = 0.0001; α = 1.04; γ = 0.005; β = 2.2 and A = 2.

Figure 2: Time Historis with the parameters µ = 0.0001; α = 1.04; γ = 0.005; β = 2.2 and A = 2.
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Figure 3: Effect of the parameter β on the limit cycle for (a)β = 2.2, (b)β = 3.50, (c)β = 7, (d)β = 15 with the parameters
of Fig1.

Figure 4: Effect of the parameter β on Time Historis for (a)β = 2.2, (b)β = 3.5, (c)β = 7, (d)β = 15 with the parameters
of Fig1.

83



apr.ccsenet.org Applied Physics Research Vol. 11, No. 2; 2019

Figure 5: Effect of the parameter µ on the limit cycle for (a)µ = 0.0001, (b)µ = 1, (c)µ = 2, (d)µ = 4 with the parameters
of Fig1.

cycle obtained is stable. The effects of certain parameters of the model are observed on the limit cycle. The influence of
the parameter β is observed on the phase space of the model (see Fig.3) and on his Time Historis (see Fig.4). We note a
displacement of the limit cycle towards the abscissa ζ very weak and the stability of the limit cycle not changed when β
increases. The influence of the parameter µ on the limit cycle is illustrated in Fig.5 and we observe a tripling of the period
of the limit cycle when the parameter µ increases. In the case where the model is influenced by the external excitation
(E , 0) many phenomena and behaviors can be hoping.

3.2 Amplitude of the harmonic oscillatory states
When the model is now influenced by external excitation, the amplitude of the forced harmonic oscillatory states can be
found using the harmonic balance method (Nayfey, A. H. & Mook, D. T., 1979). Our objective is to study the interaction
between the external excitation and the amplitude of the limit cycle. For this reason, we assume that the fundamental
component of the solutions has the period of external excitation and thus express the solution ζ as follows:

ζ = a1 cosΩt + a2 sinΩt − β
α
= Anc cos(Ωt − ϕ) − β

α
. (27)

By introducing expression (27) in Eq.(8) and by separately equalizing the coefficient of terms in sine and cosine, we obtain

(α −Ω2 + 3γ
β2

α2 +
3
4
γA2

nc)a1 − µΩ(
β2

α2 − 1 +
1
4

A2
nc)a2 = E (28)

µΩ(
β2

α2 − 1 +
1
4

A2
nc)a1 + (α −Ω2 + 3γ

β2

α2 +
3
4
γA2

nc)a2 = 0

where

A2
nc = a2

1 + a2
2, tan ϕ =

µΩ( β
2

α2 − 1 + 1
4 A2

nc)

(α −Ω2 + 3γ β
2

α2 +
3
4γA

2
nc)
. (29)

The following nonlinear algebraic equation satisfied by the amplitude Anc is obtained after some algebraic manipulations
of equation (28):

1
16

(
9γ2

µ2Ω2 + 1)A6
nc +

1
2

[
3γ(α −Ω2)α2 + 9γ2β2

µ2Ω2α2 +
β2

α2 − 1]A4
nc + [(

β2

α2 − 1)2 +
1
µ2Ω2 (α −Ω2 +

3γβ2

α2 )2]A2
nc −

E2

µ2Ω2 = 0 (30)

84



apr.ccsenet.org Applied Physics Research Vol. 11, No. 2; 2019

Figure 6: Comparison between analytical and numerical frequency-response curve Anc(Ω) with the parameters µ = 0.045;
α = 1; γ = 0.02; β = 0.008 and E = 0.01.

Figure 7: Effects of the parameter β on the amplitude of the harmonic oscillatory states Anc(Ω) with the parameters
µ = 0.045; α = 1; γ = 0.02 and E = 0.03.
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Figure 8: Effects of the parameter β on the amplitude-response curve displaying jump in amplitude Anc(E) with the
parameters µ = 0.045; α = 0.15; γ = 0.5 and Ω = 1.

Equation (30) is solved using the Newton Raphson algorithm and the behavior of the amplitude Anc is observed when the
frequency of the external excitation Ω is varied. We obtained a good agreement for the comparison between the analytical
frequency response curve obtained via Eq.(30) and that obtained from the direct numerical simulation of Eq.(8) (see
Fig.6). We have investigated later the effect of the parameter β on the state of resonance, the process of hysteresis and the
amplitude jump and the results are illustrated by the figures 7,8. The fig.7 shows the variation of Anc as a function of Ω for
different values of β. It is noted through this figure that the amplitude of the resonance and the phenomenon of amplitude
jump increases with β. The fig.8 shows the variation of Anc as a function of the amplitude E of the external excitation.
This figure shows that the phenomenon of hysteresis disappears with the increase of the parameter β. We can therefore
conclude that the parameter β which shows the difference between this modified Van der Pol-Duffing oscillator and the
ordinary Van der Pol-Duffing oscillator already studied by many researchers in the literature, can be used to reduce
or suppress the amplitude of the resonance and the hysteresis phenomenon in the dynamics of the nonlinear chemical
reactions considered.

4. Conclusion
In this paper we have investigated on the determination of analytical solution and cycle limite in nonlinear chemical
dynamics.We have considered chemical dynamics modeled by a modified Van der Pol-Duffing oscillator subjected to ex-
ternal periodic excitation.The model has been described and the corresponding equation of motion obtained.The Lindsted
perturbation method is used to determine the amplitude and frequency of the model boundary cycle as well as an ap-
proximate solution of the oscillator. The amplitude of the oscillatory states in the non-autonomous case was found using
the method of the harmonic balance. In the dynamics of the model we noticed the appearance of some very important
phenomena such as resonance, hysteresis and amplitude jump. The influence of certain parameters of the model on these
phenomena has been studied.
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