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Abstract 
Bohr’s quantum condition is an indispensable assumption for classical quantum theory. However, strictly speaking, 
Bohr's quantum condition does not hold when deriving the energy of an electron forming a hydrogen atom from 
the perspective of the theory of relativity. In this paper, it is thought that the relationship enfolded in Bohr's 
quantum condition, i.e., / /nv c α n=  is suitable as a new quantum condition to replace Bohr’s quantum condition. 
Also, in quantum mechanics, the energy of an electron is derived based on the theory of relativity, as exemplified 
in the theory of Sommerfeld. However, this paper points out that the previous energy formula based on the theory 
of relativity is mistaken. It also proposes a previously unknown formula for the kinetic energy of an electron. 
Keywords: Hydrogen Atom, Kinetic Energy, Bohr’s Quantum Condition, Einstein’s Energy-Momentum 
Relationship, Planck Constant 
1. Introduction 
N. Bohr was the first to derive the energy levels of an electron forming a hydrogen atom (this will be abbreviated 
below as energy levels of the hydrogen atom). This Introduction reviews the history up to derivation of the 
energy levels of the hydrogen atom with the assistance of the writings of Dr. H. Ezawa in Japanese. 
In 1884, J. J. Balmer noticed that the wavelengths λ of the spectral lines emitted from a hydrogen atom could be 
described with the following formula. 
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After that, W. Ritz transformed this formula as follows. 

 2 2

1 4 1 1 3,4, .
2

n
λ B n

 = − ,     = ⋅ ⋅ ⋅ 
 

 (2) 

Ritz also generalized Equation (2) as follows. 

 2 2

1 1 1 1, 2, ; 1,2, .R n m m m
λ m n

 = − ,     = +    + ⋅ ⋅ ⋅    = ⋅ ⋅ ⋅ 
 

 (3) 

Bohr tried multiplying both sides of Equation (3) by hc. When this is done, 

 2 2 .c hcR hcRh hν m n
λ m n

= = − ,     <  (4) 

From Equation (4), Bohr predicted the following relationship. 
 m nhν E E= − + .  (5) 

The energy of the hydrogen atom is discontinuous. Bohr thought that when the electron transitions from a state 
with energy En to a state with energy Em, the electron emits a photon with energy hv. He also obtained the 
following formula for energy levels. 
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 2n
hcRE
n

= − .  (6) 

At the time, the value of cR was known through experiment, but details concerning R were not known. Thus 
Bohr decided to derive the energy levels of the hydrogen atom using another method. 
First, Bohr considered the case where the electron moves at constant speed around the atomic nucleus (proton). 
If r is taken to be the radius of a circular orbit, and v is taken to be the speed of the electron, then the following 
Newtonian equation of motion holds. 

 
2 2

e
2

0

1
4

m v e
r πε r

=   .  (7) 

This equation indicates the equality of the centrifugal force acting on the electron (left side) and the Coulomb 
attraction received by the electron from the atomic nucleus. Here, the electron mass was set to e ,m  and the 
charge was set to .e−  
Also, since the energy of the electron can be expressed by the sum of the kinetic energy K and potential energy 
V(r), 
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e

0

1
2 4

m v eE
πε r

= −   .  (8) 

According to the Virial theorem, 2 ( )K V r= −  in the case of a circular orbit, and thus the energy can be written 
as follows. (The discussion here concerns a circular orbit as a special form of an elliptical orbit.) 
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Here, if both sides of Equation (10) are squared, 

 
2 4

2
2

0

1 1
4 4

eE
πε r

 
=  . 

 
 (11) 

Next, the following equation is obtained by dividing Equations (11) by Equation (9). 
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= −  . 
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Incidentally, the angular momentum L when an electron moves in a circle can be expressed as mvr. Here, if the 
number n is affixed to the energy E and angular momentum L, then Equation (12) becomes as follows. 
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The energy in Equation (6) could be found through calculation. Bohr believed Equations (6) and (13) to be equal. 
Thus, 
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 (14) 

It was found that L, for which a unique value was not known, could be expressed with the following equation. 

 
1/ 22

e

04 2n
e mL n
πε hcR

 = ⋅ . 
 

 (15) 



apr.ccsenet.org Applied Physics Research Vol. 11, No. 1; 2019 

21 

Bohr substituted in the not very precise numeric values for physical quantities that were known at the time and 
conjectured nL  to be as follows. 

 , 1,2, .
2n
hL n n n
π

= =      = ⋅ ⋅ ⋅  (16) 

If Equation (16) is assumed, then Equation (13) becomes as follows. 
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 (17a) 
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 (17b) 
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e
2 .

2
α m c

n
= −  (17c) 

This made it possible to find the energy levels of the hydrogen atom. Here, α is the following fine-structure 
constant. 
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Equation (17) is not a logically derived equation. It is an equation derived by assuming the quantum condition in 
Equation (16). 
At the time, L. de. Broglie noticed that light, thought to be a wave in the classical theory, exhibits particle 
characteristics. He also predicted that the electron, thought to be a particle, would exhibit wave characteristics. 
He also assumed that when the wavelength λ  of the wave accompanying an electron in circular motion satisfies 
the following relationship, that electron is in a stable state. 

 2 , 1,2, .πr n n
λ

=      = ⋅ ⋅ ⋅  (19) 

The following relationship holds between the momentum p and wavelength λ  of the electron. 

 .hλ
p

=  (20) 

Substituting the λ  of Equation (20) into Equation (19) and also taking into account Equation (16), the 
following equation can be derived. 
 2 2 , 1,2, .n nπrp πL nh n= =      = ⋅ ⋅ ⋅  (21) 

According to de Broglie, Bohr's quantum condition was able to acquire a substantive meaning, and thus it came 
to be that the energy levels of the hydrogen atom in Equation (17), found by assuming Equation (16), were 
believed to be correct. 
Also, if nE  in Equation (17) is substituted into Equation (10), then the following formula can be derived as the 
orbital radius of the electron. 

 
2

2
0 2

e

4 , 1,2, .nr πε n n
m e

=      = ⋅ ⋅ ⋅  (22) 

2. Discussion of Bohr’s Quantum Condition 
2.1 Relationship Enfolded in Bohr’s Quantum Condition 

Bohr thought the following quantum condition was necessary to find the energy levels of the hydrogen atom. 
 e 2 2 .n nm v πr πn⋅ =   (23) 
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In Bohr’s theory, the energy of the hydrogen atom is treated non-relativistically, and thus here the momentum of 
the electron is taken to be e .m v  Also, the Planck constant h can be written as follows (Suto, 2015): 

 e C .
2 2
h m c= = λ
π π

 (24) 

Cλ  is the Compton wavelength of the electron. 
When Equation (24) is used, the fine-structure constant α can be expressed as follows. 

 
2 2

2
0 0 e C

.
4 2

e eα
πε c ε m c λ

= =


 (25) 

Also, the classical electron radius er  is defined as follows. 

 
2

e 2
0 e

.
4

er
πε m c

=  (26) 

If e /r α  is calculated here, 

 e C .
2

r λ
α π

=  (27) 

If Equation (22) is written using er  and α, the result is as follows. 

 
22 2

2 2 20 e
0 2 2 2 2

e 0 e

44 .
4n

e πε c rr πε n n n
m e πε m c e α

 = = = 
 

   (28) 

Next, if   in Equation (24) and nr  in Equation (28) are substituted into Equation (23), 

 2e e C
e 22 2 .

2n
r m cλm v π n πn
α π

⋅ =  (29) 

If Equation (27) is also used, then Equation (29) can be written as follows. 

 2e e e
e 22 2 .n

r m crm v π n πn
α α

⋅ =  (30) 

From this, the following relationship can be derived. 

 .nv α
c n

=  (31) 

2.2 Various Formulas Derivable from Equation (31) 
Bohr’s quantum condition: 
It was possible to derive Equation (31) from Bohr’s quantum condition (23), and thus it should be possible to 
derive Equation (23) from Equation (31). First, both sides of Equation (31) are multiplied by e 2 .nm πr⋅  Next, 
when the value of Equation (22) is substituted for nr  on the right side, 

 
2 2

2e
e 0 2

0 e

2 2 4 2 .
4n n

m c em v πr π πε n πn
n πε c m e

 
⋅ = ⋅ = 

 

 


 (32) 

With this, it was possible to derive Bohr’s quantum condition (23) from Equation (31). 
Bohr’s energy levels (17): 
When both sides of Equation (31) are squared, and then multiplied by e / 2,m  

 
2 2

e e
2 2

1 1 .
2 2

nm v m
c n

= α  (33) 

Hence, 
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= − = −α  (34) 
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If Equation (31) is taken as a departure point, the energy levels of the hydrogen atom derived by Bohr can be 
derived immediately. Equation (31) has tremendous power. However, from a relativistic perspective, ( ) 2

e1 / 2 nm v  
is an approximation of the kinetic energy of the electron. Therefore, the energy in Equation (34) is also an 
approximation of the true value. 
2.3 Calculation of the Left Side of Equation (23) 
In this paper, Bohr’s quantum condition is treated relativistically. Therefore, if e nm v  in Equation (23) is 
replaced with ,np  the quantum condition becomes as follows. 
 2 2 .n np πr πn⋅ =   (35) 

Now, in Equation (23), it is assumed that the left side and right side are equal. However, in this paper, the right 
side is determined by actually calculating the left side of Equation (35). 
One of the most important relationships in the Special Theory of Relativity (STR) is as follows: 

 ( ) ( )2 22 2 2 2
0 .m c c mc+ =p  (36) 

Here, 2mc  is the relativistic energy of an object or a particle, and 2
0m c  is the rest mass energy. 

Currently, Einstein’s relationship (36) is used to describe the energy and momentum of particles in free space, 
but for explaining the behavior of bound electrons inside atoms, opinion has shifted to quantum mechanics as 
represented by equations such as the Dirac’s relativistic wave equation. 
For reasons such as these, there was no search for a relationship between energy and momentum applicable to an 
electron in the hydrogen atom. However, the author has ventured to take up this problem, and derived the 
following relationship (Suto, 2011; Suto, 2018a): 

 ( )22 2 2 2
re, e , 1,2, .n nE c m c n+ =      = ⋅ ⋅ ⋅p  (37) 

However, 

 ( )2 2 2
re, e e e

1 .
2n n n nE m c E m c K m c V r= + = − == +  (38) 

Here, re,nE  is the relativistic energy of the electron, described with an absolute scale. 
The following formula can be derived from Equation (37). (See Appendix A) 

 
1/22

2
re, e 21 .n

n
vE m c
c

−
 

= + 
 

 (39) 

However, Equation (39) is insufficient as a formula describing the micro world. The velocity of the electron is 
included in the equation, and the discrete energy levels characteristic of quantum mechanics have not been 
incorporated. 
Thus, to solve this problem, Equation (39) is rewritten as follows using Equation (31). 

 
1/22

2
re, e 21 .n

αE m c
n

−
 

= + 
 

 (40) 

Also, re,nE  defined with Equation (38) can be defined as follows. 

 2
re, .n nE m c=  (41) 

From this, 

 
1/ 22

e 21 .n
αm m
n

−
 

= + 
 

 (42) 

Also, Equation (40) can be written as follows. 
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2
re, e 2 2 .n

nE m c
n α

 
=  + 

 (43) 

When re,nE  is determined, the np  in Equation (37) is also determined as follows. 

 
1/22

e 2 2 .n
αp m c

n α
 

=  + 
 (44) 

Incidentally, nE  in Equation (10) can be written as follows. 

 
2

0

1 1
2 4n

n

eE
πε r

= −   .  (45) 

Also, if Equation (43) is taken into account, the nE  in Equation (38) can be written as follows. 

 
1/22

2 2
re, e e 2 2 1 .n n n

nE K E m c m c
n α

  
 = − = − = − +   

 (46) 

When this nE  is substituted into Equation (45) and the equation is rearranged, the following nr  is found. 

 
1/ 22 2

e
2 21 1 1 .

2n
r n αr

α n

−    
 = + + +   
     

 (47) 

Now the np  and nr  substituted into the left side of Equation (35) are determined (i.e., Equations (44) and 
(47)). 
If these values are substituted into the left side of Equation (35), the result is as follows. 

 
1/2 1/2 1/22 2 2 2 2

e e
e e2 2 2 2 2 22 1 2 1 1 .

2 2
α r n α n r n αm c π m c π

n α α n α α n

          +    ⋅ + = ⋅ + +       + +             
 (48) 

If Equations (27) and (24) are used here, then Equation (48) becomes, 

 
1/ 2 1/ 22 2

e
e 2 2

12 1 1 2 1 1 .
2 2
r n α αm c π πn
α n n

      
   ⋅ + + = ⋅ + +   
         

  (49) 

Hence, 

 
1/22

2

12 2 1 1 .
2n n

αp πr πn
n

  
 ⋅ = ⋅ + + 
   

  (50) 

Next, if the right side of Equation (50) is expanded, the result is as follows. 

 
1/ 22 2 4 6

2 2 4 6

1 12 1 1 2 1 1 .
2 2 2 8 16

α α α απn πn
n n n n

      
 ⋅ + + ≈ ⋅ + + − +    
      

   (51) 

This yields, 

 
2 4 6

2 4 62 2 1 .
4 16 32n n
α α αp πr πn
n n n

 
⋅ ≈ + − + 

 
  (52) 

As n increases, Equation (52) converges to Equation (35). Due to the above discussion, 
 2 2 .n np πr πn⋅ ≠   (53) 

Considered from the perspective of the theory of relativity, Bohr’s quantum condition (35) does not strictly hold. 
Also, if the relationship of Equation (42) is used, Equation (50) can be written as follows. (See Appendix B) 
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 e12 2 1 .
2n n

n

mp πr πn
m

 
⋅ = ⋅ + 

 
  (54) 

Incidentally, there is the following quantum condition of Sommerfeld, as an extension of Bohr’s quantum 
condition to a 3-dimensional elliptical orbit. 

 2 .p ds n =  π  (55) 

However, if Equation (53) is taken into account, Equation (55) does not strictly hold. 
3. Derivation of a Previously Unknown Equation for Kinetic Energy 
In classical mechanics, the kinetic energy of the electron is defined as follows. 

 2
e

1 .
2

K m v=  (56) 

However, the mass of a moving electron varies (in the STR, it is predicted that the mass of a moving object will 
increase, but the mass of an electron moving within an atom will decrease). Therefore, Equation (56) does not 
strictly hold. Now, can the kinetic energy of an electron in a hydrogen atom be described with the following 
formula? 

 21 .
2 n nK m v=  (57) 

To address this problem, let us first discuss the momentum of the electron. 
3.1 Momentum of the Electron in a Hydrogen Atom 
The momentum of the electron np  is given by Equation (44), but does the following formula hold? 
 .n n np m v=  (58) 

If the values of nm  in Equation (42) and nv  in Equation (31) are substituted into the right side of Equation 
(58), 

 
1/2 1/ 22 2

e e2 2 21 .n n n
α αc αm v m m c p
n n n α

−
   

= + ⋅ = =   +   
 (59) 

From this, it is evident that Equation (58) is correct. 
3.2 Kinetic Energy of the Electron in a Hydrogen Atom 
Does the following formula for kinetic energy used in quantum mechanics hold? 

 
2

e

.
2

n
n

pK
m

=  (60) 

Equation (42) can be written as follows. 

 
1/ 22

2 2
e

.nn m
n m

 
= + α

 (61) 

Also, the formula for momentum of the electron Equation (44) can be written as follows. 

 
1/21/ 2 22

e e2 2 2
e

1 1 .n
n

mnp m c m c
n m

  
= − = −  +   α

 (62) 

From this, np  can be defined as follows. 

 ( )1/ 22 2
e .n np c m m= −  (63) 

When Equations (58) and (63) are combined, 
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 ( )1/ 22 2
e .n n n np m v c m m= = −  (64) 

If Equation (31) is taken into account, the following relationship can also be derived from Equation (64). 

 ( )1/ 22 2
e .nn

n

m mv
c m n

−
= = α  (65) 

From this, it is evident that there is the following relationship between the fine-structure constant and the mass of 
the electron. 

 ( )1/ 22 2
e 1

1

.
m m

m
−

=α  (66) 

Incidentally, it is also clear from Equations (38) and (41) that the kinetic energy of the electron nK  can be 
defined as follows. 

 ( ) 2
e .n nK m m c= −  (67) 

However, in this paper the aim is to find a formula for kinetic energy similar to Equations (56) and (57). 
Now, let us write Equation (60) as follows, and determine the value of A. 

 
2

.
A

n
n

pK =  (68) 

When Equations (63) and (67) are used, 

 ( )( )
( )

22
e e

e2
e

A .n nn
n

n n

m m m m cp m m
K m m c

− +
= = = +

−
 (69) 

From this, the formula for the kinetic energy of an electron in the hydrogen atom is not Equation (60), and 
becomes as follows. 

 
2

e

.n
n

n

pK
m m

=
+

 (70) 

Here, if Equation (70) is written to imitate the form of Equation (57), the result is as follows. 

 
2

e

.
1 /

n n
n

n

m vK
m m

=
+

 (71) 

Equations (56) and (57) are approximations of Equation (71). However, the velocity of the electron in the atom 
is not a basic physical quantity. Therefore, Equation (71) is inferior to Equation (70). 
4. Discussion 
4.1 Importance of Equations (50) and (54) 
The author has derived the following relationship in another paper (Suto, 2017d): 

 
1/ 22

e
2

e

1 .
/ 2

n

n n

m r
n m r r

 
+ = =  − 

α  (72) 

If 1 is added to each side of Equation (72), it becomes as follows. 

 
1/ 22

e e
2

e

2 / 21 1 .
/ 2

n n

n n

α m m r r
n m r r

  + −+ + = =  − 
 (73) 

When this relationship is taken into account, Equation (50) can be written as follows. 
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 e

e

/ 42 2 .
/ 2

n
n n

n

r rp πr πn
r r

 −⋅ =  − 
  (74) 

Here, e / 4r  is thought to be the radius of the proton (Suto, 2017b): 
Also, e / 2r r=  is the orbital radius when the relativistic energy of the electron becomes zero (Suto, 2014): 
However, it is unclear whether these formulas (Equations (50), (54), and (74)) that are more precise than Bohr's 
quantum condition have a deep physical significance. 
Incidentally, if the values of np  and nr  derived in this paper are substituted into the left side of Equation (35), 
then the right side is determined. However, Equations (50), (54) and the like cannot be derived if Equation (31) 
is not assumed. Therefore, it is not desirable to assume these formulas from the beginning instead of Equation 
(35). 
For Equations (50), (54) and the like, it should not be assumed that the right and left sides are the same; the 
interpretation should be that when the left side is calculated, it becomes the right side. In this paper, it is thought 
that Equation (31) is more substantial than Bohr's quantum condition as a quantum condition. 
4.2 Kinetic Energy of the Electron (Comparison of This Paper and Classical Quantum Theory) 
4.2.1 A. Sommerfeld defined kinetic energy as the energy a moving object has in excess of the stationary object. 
Therefore, if the rest mass of the object is 0m  and the mass when moving is ,m  the kinetic energy of the 
object can be described by the following formula (Sommerfeld, 1923): 

 ( )
( )

2 2
SO 0 0 1/ 22

1 1 , .
1

vK c m m m c β
cβ

 
 = − = −      =
 − 

 (75) 

Here, the relativistic energy of a particle reE  is 2 ,mc  and thus the following relationship holds. 
 2

re 0 .E m c>  (76) 

Sommerfeld believed that Equation (75), which can be derived from Equation (36), can also be applied to the 
electron in a hydrogen atom. If, following Equation (75), the rest mass of the electron is taken to be e ,m  then 
the kinetic energy of the electron SOK  can be described with the following two equations. (Here, SOK  refers to 
the kinetic energy predicted by Sommerfeld.) 

 ( )
( )

2 2
SO e e 1/ 22

1 1 .
1

K c m m m c
β

 
 = − = −
 − 

 (77) 

 2
SO re e .K E m c= −  (78) 

Incidentally, the energy of the hydrogen atom derived by Bohr becomes a negative value. However, Sommerfeld 
did not take that to be a problem. This is because the energy becomes positive if the rest mass energy is added to 
the energy of the hydrogen atom, and the energy is described relativistically. That is, 
 2 2

re e re e, .E E m c E m c= +      0 < <  (79) 

However, between E and K, there is the relationship .E K− =  Therefore, Equation (79) can be written as 
follows. 
 2

re e .E m c K= −  (80) 
Thus, K is 
 2

e re.K m c E= −  (81) 
The relativistic energy reE  of an electron forming a hydrogen atom is smaller than the rest mass energy of the 
electron. Therefore, the formula for the kinetic energy of an electron in a hydrogen atom is not Equation (77). If 
the kinetic energy of the electron predicted by this paper is indicated SU, ,nK  then SU,nK  is given by the 
following formula. (Here, SUK  signifies the kinetic energy predicted by this paper (Suto).) 

 
1/ 22

2 2 2
SU, e e 21 1 .n n

αK m c m c m c
n

−  
 = − = − + 
   

 (82) 
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In contrast, the formula of Sommerfeld Equation (75) can be written as follows by using Equation (31). 

 
1/22

2
SO, e 21 1 .n

αK m c
n

−  
 = − − 
   

 (83) 

Now, if a Taylor expansion is performed on the right side of Equations (83) and (82), 

 
2 4 6

2
SO, e 2 4 6

3 51 1 .
2 8 16nK m c

n n n
  

≈ + + + −  
  

α α α  (84) 

 
2 4 6

2
SU, e 2 4 6

3 51 1 .
2 8 16nK m c

n n n
  

≈ − − + −  
  

α α α  (85) 

Rewriting these formulas, the following is obtained. 

 
2 2 4

2
SO, e2 2 4

3 51 .
2 4 8nK m c

n n n
 

≈ + + 
 

α α α  (86) 

 
2 2 4

2
SU, e2 2 4

3 51 .
2 4 8nK m c

n n n
 

≈ − + 
 

α α α  (87) 

When 1,n =  Equations (83), (82) and (17) become as follows. 
 SO, so, 13.60515eV.n nK E= − =  (88) 

 SU, su, 13.60624eV.n nK E= − =  (89) 

 
2 2

e
BO, 2 13.60569eV.

2n
α m cK

n
= =  (90) 

Here, if the ratio of the two kinetic energies is taken, 

 SO,

SU,

0.99992.n

n

K
K

=  (91) 

The difference between SO,nK  and S U,nK  is so small that it is difficult to discern by experiment. In 
conventional physics, if a theoretical value and measured value are regarded as the same, then the thinking has 
been that the correctness of the theory has been demonstrated. (That is, the Sommerfeld theory was also thought 
to be correct because the theoretical value and experimental value were regarded as matching.) 
However, this paper has presented an example where the theory's correctness is not necessarily demonstrated, 
even though the theoretical value and measurement value are regarded as the same. Physics has entered a new 
era. 
Incidentally, since Equation (37) could be derived, there is a considerable broadening of the energy region that 
can be handled. Whereas the region of energy that can be handled with Equation (37) reE  is 2 2

e re e ,m c E m c− < <  
the region that can be handled with Equation (17) is 2 2 2

e / 2 0.nα m c n E− < <  Taking the ratio of these two energy 
domains, 

 
2

e

so,1

2 75,112.46.m c
E

=
−

 (92) 

It is very significant that Equation (37) could be derived (Suto, 2018b). 
4.2.2 Correction of the Hamiltonian 
The Hamiltonian used in quantum mechanics has the following form. 

 ( )
1/ 22 2

2
e 2

11 , 1 .
2

e vH m c γ γ
r c

−
 

= − −      = − 
 

 (93) 

However, according to this paper, the correct Hamiltonian takes the following form. 
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 ( )
1/ 2 1/ 22 2 2

2
e 2 2

11 , 1 1 .
2

e v αH m c γ γ
r c n

− −
   ′ ′= − −      = + = +   
   

 (94) 

4.3 Physical Quantities Derived from Equation (31) 
4.3.1 Kinetic Energy of the Electron 
First, if both sides of Equation (31) are squared, and multiplied by ( )2

e/ ,n nm m m+  

 
2 2 2 2

2 2
e e

.n n n

n n

m v α m
m m c n m m

⋅ = ⋅
+ +

 (95) 

From this, the kinetic energy of the electron nK  is, 

 
2 2 2 2 2

2
e e

.n n n
n

n n

m v α c mK
m m n m m

= = ⋅
+ +

 (96) 

If the relationship in Equation (61) is used here, 

 
2 2 2

2
e2 2 2 1/22

e 2 2

1 .

1
n

α c nK m
n n α nm

n α

 
= ⋅ +     

 +  +   

 (97) 

Next, the following formula is multiplied with the numerator and denominator, 

 
1/ 22

2 21 .n
n α

 
−  + 

  

When this is done, 

 
1/2 12 2 2 2 2

e
2 2 2 2 2 2 21 1n

α m c n n nK
n n α n α n α

−      
 = − −     + + +       

 (98a) 

 
1/22 2 2 2 2 2

e
2 2 2 2 2 21α m c n n n α

n n α n α α

      + = −     + +       
 (98b) 

 
1/ 22

2
e 2 21 .nm c

n α

  
 = −  +   

 (98c) 

This enables derivation of Equation (82) from Equation (31). 
4.3.2 Momentum of the Electron 
If both sides of Equation (31) are multiplied by ,nm  

 .n n
n

m v α m
c n

=  (99) 

Next, if the relationship in Equation (61) is used, np  becomes as follows. 

 
1/ 2 1/ 22 2

e e2 2 2 2 .n n n
α n αp m v m c m c
n n α n α

   
= = =   + +   

 (100) 

This enables derivation of Equation (44) from Equation (31). 
4.4 Energy of a Particle Moving in an Isolated System in Free Space 
This is a digression from the theme of this paper, but let's try to find a formula for the kinetic energy of a particle 
from Equation (36). According to the STR, the relationship of mass m  and rest mass 0m  of a particle moving 
in free space is as follows. 
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( )

0
1/22

.
1

mm
β

=
−

 (101) 

Thus Equation (36) can be written as follows. (However, this is outside the atom, so n is deleted.) 

 
2

2 4 2 4 2 2
0 02 2 .cm c m c p c

c v
 

= + − 
 (102) 

If 2p  is found from this equation, 

 
2

2 2 2
0 2 2 .vp m c

c v
 

=  − 
 (103) 

Also, the kinetic energy K of the particle, 

 
1/ 22

2 2 2
0 0 2 2 1 .cK mc m c m c

c v

  
 = − = − −   

 (104) 

p and K have been found, and thus B is found this time from the following equation. 

 
2

.
B
pK =  (105) 

The details will be omitted, but when the calculation is carried out, B is as follows. 

 
( )0 01/ 22 2

1B 1 .
1 /

m m m
v c

 
 = + = +
 − 

 (106) 

Thus Equation (105) becomes as follows. 

 
2

0

.pK
m m

=
+

 (107) 

This formula can also be written as follows. 

 
2

0

.
1 /

mvK
m m

=
+

 (108) 

In classical mechanics, mass does not depend on velocity, and thus 0 .m m=  Equation (107), the correct formula 
for kinetic energy in classical mechanics, was not used as the formula for kinetic energy, and the following 
well-known formula was used. 

 2
0

1 .
2

K m v=  (109) 

5. Conclusion 
5.1 Quantum Condition 
When the actually obtained physical quantities are substituted into the left side of Equation (35), the following 
values (right side) are obtained (however, np  in this case is not the non-relativistic momentum treated by Bohr; 
it is the relativistic momentum.) 

 
1/22

2

12 2 1 1 .
2n n

αp πr πn
n

  
 ⋅ = ⋅ + + 
   

  (110) 

 e12 2 1 .
2n n

n

mp πr πn
m

 
⋅ = ⋅ + 

 
  (111) 
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 e

e

/ 42 2 .
/ 2

n
n n

n

r rp πr πn
r r

 −⋅ =  − 
  (112) 

However, these formulas cannot be derived if Equation (113) is not assumed at the start. Therefore, it is 
undesirable to assume these formulas at the beginning as a quantum condition to replace Bohr's condition 
Equation (23). In this paper, the following quantum condition is proposed as a new quantum condition to replace 
Bohr's quantum condition. 

 .nv
c n

= α  (113) 

If non-relativistic physical expressions are written on the left side of Equation (113), then a non-relativistic 
approximation appears on the right side (Equations (32) and (34)). If, in contrast, relativistic physical 
expressions are written on the left side of Equation (113), then a relativistically accurate expression appears on 
the right side (Equations (98) and (100)). 
5.2 Formula for Kinetic Energy of the Electron 
The mass of the electron in a hydrogen atom depends on the velocity of the electron (as the velocity of the 
electron increases, the mass of the electron decreases.) Therefore, the kinetic energy of the electron cannot be 
explained with classical mechanics. That is, 

 2
e

1 .
2n nK m v≠  (114) 

 21 .
2n n nK m v≠  (115) 

 
2

e

.
2

n
n

pK
m

≠  (116) 

Also, the kinetic energy of an electron in a hydrogen atom cannot be described even with the following formula 
of Sommerfeld which conforms to Einstein’s energy-momentum relationship (36). 

 
1/ 22

2
e 2 2 1 .n

nK m c
n

  
 ≠ − −   α

 (117) 

The kinetic energy of an electron in a hydrogen atom is defined as follows. 

 ( ) 2
e .n nK m m c= −  (118) 

Also, the formulas for kinetic energy of an electron presented in this paper are as allows. 

 
1/ 22

2
e 2 21 .n

nK m c
n

  
 = −  +   α

 (119) 

 
2

e

.n
n

n

pK
m m

=
+

 (120) 

 
2

e

.
1 /

n n
n

n

m vK
m m

=
+

 (121) 

Here, the velocity of the electron is included in Equation (121), and thus Equation (121) is a formula inferior to 
Equation (120). 
However, the formula for the kinetic energy of an object moving in an isolated system in free space must include 
velocity. As a formula for the kinetic energy of an object moving in macro space, the following formulas are 
more accurate than Newton’s formula. 
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2

0

.pK
m m

=
+

 (122) 

 
( ) ( ){ }

2 2
0

1/ 2 1/ 22 2 2 20

.
1 / 1 / 1 1 /

mv m vK
m m v c v c

= =
+ − + −

 (123) 

5.3 Formula for the Momentum of the Electron in a Hydrogen Atom 
The momentum of the electron in a hydrogen atom is defined as follows. 
 .n n np m v=  (124) 

The formula for momentum presented by this paper is as follows. 

 
1/22

e 2 2 .n
αp m c

n α
 

=  + 
 (125) 

 ( )1/ 22 2
e .n np c m m= −  (126) 
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Appendix A 
In classical mechanics, 

 .pm
v

=  (A1) 

And, in STR, 
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 2 .Em
c

=  (A2) 

If, further, we suppose that Equation (A2) describes a universal equivalence of energy and inertial mass, we can 
combine Equations (A1) and (A2) into a single statement: 

 
2

.pcE
v

=  (A3) 

Incidentally, in this paper Equation (A3) can be written as follows. 

 re, .n n
n

E v
p c

c
=  (A4) 

Here, if we substitute np c  in Equation (A4) into Equation (37) and rearrange, then the following value is 
obtained. 

 
1/22

2
re, e 21 .n

n
vE m c
c

−
 

= + 
 

 (A5) 

 
Appendix B 
Until Bohr introduced the Planck constant h, the only universal constants were m, e, c, and ε, and with this alone 
it was impossible to create a quantity with the dimension of length. Now, is the Planck constant really a universal 
constant on a par with e and c? 
This problem has already been discussed in another paper (Suto, 2017c): 
According to the STR, the electron mass energy 0E  is given by the following formula. 
 2

0 e .E m c=  (B1) 

According to the law of conservation of momentum, a single photon with this energy is never emitted from an 
electron. However, if there is a photon with this energy in the natural world, the energy of this photon can be 
decomposed as follows. 
 0 e C C.E m c= λ ν  (B2) 

Here, Cλ  is the following electron Compton wavelength. 

 C
e

.h
m c

=λ  (B3) 

If the name "Compton frequency" is tentatively assigned to the quantity Cν  that has newly appeared here, then 
the speed of light can be written as follows. 
 C C.c = λ ν  (B4) 

If e Cm cλ  in Equation (B2) is written as h to simplify, then Equation (B2) can be written as follows. 
 0 C.E h= ν  (B5) 

Now, consider a case where an electron stationary in free space is attracted to a proton, and forms a hydrogen 
atom. The kinetic energy nK  which the electron acquires at this time can be expressed as follows. 
 2 2

e .n nK m c m c= −  (B6) 

 
1/ 22

2 2
e e 21 .nK m c m c

n

−
 

= − + 
 

α  (B7) 

If the ratio of nK  and 0E  is taken here, 

 
1/ 22

2 2
0

1 .nK n
E n

 
= −  + α

 (B8) 

Taking into account the relationship in Equation (B2), 
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 = −  +   

ν
λ α

 (B9) 

Here a frequency nν  like the following is defined. 

 
1/22

C2 21 .n
n

n

  
 − = +   

ν ν
α

 (B10) 

When this is done, 
 .n nK h= ν  (B11) 

However, the kinetic energy acquired by the electron and the photonic energy nE  emitted by the electron are 
equal, and thus Equation (B11) can also be written as follows. 
 .n nE h= ν  (B12) 

Incidentally, if it is assumed that the Planck constant is nothing more than a symbol for combining e C ,m cλ  then 
it is desirable to write the fine- structure constant as follows. 

 
2 2

2
0 0 C e

1 .
4 2

e eα
πε c ε λ m c

= = ⋅


 (B13) 

The Planck constant is thought to be the minimum unit of angular momentum existing in the natural world, but 
that is not actually the case. The minimum unit of angular momentum exists separately (Suto, 2017a). 
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