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Abstract 
The critical current density, 𝐽  has been the most important parameter used in the design and engineering of 
effective devices which is one of the implementation of high temperature superconductors (HTSC). In this work, 
an effort has been made to further improve the critical current density of YBa2Cu3O7-x (YBCO) thin films by 
preventing the magnetic flux line lattice against the Lorentz force by pinning it in place with the aid of 
nano-dimensional defects. These defects were generated by distributing nano sized CeO2 islands after YBCO layer 
was created on LaAlO3 substrates perpendicular to the film using pulsed laser deposition (PLD) technique. Three 
samples with buffer layers of CeO2 were prepared. CeO2 with 50 pulses, 100 pulses and 150 pulses, after each 1000 
pulses of YBCO were prepared five layers for each of the samples. The structural characterization of YBCO/CeO2 
and YBCO pristine films were carried out using x-ray diffraction (XRD) and scanning electron microscopy 
(SEM). Superconducting proprieties were measured using a vibrating sample magnetometer (VSM). 𝐽  for the 
pure YBCO and the YBCO/CeO2 films were calculated from magnetization (M) versus Field (H) loops using 
Bean’s model. 𝐽  for the 50 pulses of YBCO/CeO2 films was found to be increased slightly by an order of 
magnitude of about 40% with respect to those of YBCO films without the nano dimensional defects. 
Keywords: high temperature superconductivity, thin films, YBCO, CeO2, critical current density. 
1. Introduction. 
YBa2Cu3O7−x (YBCO) film has attracted a lot of attention in electrical power applications due to its high critical 
transition temperature Tc (>90 K) and critical current density Jc (>1 MA cm−2) (Lei, Zhao, Xu, Wu, & Chen, 2011; 
Haugan, Barnes, Brunke, Manrtense & Murphy, 2003). The growth of YBa2Cu3O7-x (YBCO) thin films is of great 
interest for superconducting applications because of its power transmission magnetic shielding, low phase noise 
oscillators, magnetic resonance imaging receiver coils (Chen et al., 2016; Matsuunotoet al.,, 2004; Rejith, Vidya 
&Thomas, 2015; Zhao, Ito & Goto, 2014). Fine precipitates, dislocations, grain boundaries and vacancies are 
many kinds of crystalline defects, being considered as pinning centers (Zhao, Ito & Goto, 2014; Kujur, Sahoo, 
Panda, Asokan & Behera, 2013). The pinning centers depend on size, shape and concentration to achieve effective 
defects. The critical current density is highly influenced by flux lattice motion due to thermal fluctuations and 
Lorentz force due to applied magnetic fields. To maintain the necessary levels of high Jc in high applied magnetic 
fields we need high spatial densities or naturally occurring growth defect to suppress the thermal fluctuations to 
stop the vortex mobility by pining them. Although nanodots of CeO2 have been shown to induce additional flux 
pinning, this has always been due to strain in the YBCO lattice because of these inclusions. Such strain however, 
could have detrimental effect on the YBCO. Aside from the thickness dependence of Jc, there is also a limitation 
placed on the thickness at which such films could be grown (Uzun & Avci, 2014; Zhao, Iton & Goto, 2014; 
Sueyoshi, Kotaki, Fujiyoshi, Mitsugi, Ikegami & Ishikawa, 2013). 
(Huang, Li, Wang, Qi, Sebastain, Haugan, &Wang, 2017), reported the enhanced flux pinning properties of YBCO 
thin films with various pinning landscapes a magnetic nanocomposite of La0.7Sr0.3MnO3 (LSMO))x (CeO2)1-x was 
incorporated into YBCO as either a cap layer or a buffer layer but the defect pinning and magnetic pinning are 
introduced in the systems giving the Jc at 77K to be around 4.66MA/cm2 (Xu et al., 2012), reported the influence 
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of CeO2-cap layer on the texture and critical current density of YBCO film, here the found that the texture and Jc of 
YBCO film were largely dependent on the texture of CeO2-cap layers under optimized deposition conditions, with 
the increase of the degree of in-plane and out-plane texture of CeO2-cap layers, there was a decrease in the Jc of the 
YBCO thin films from 4.23MA/cm2 to 0.47MA/cm2. (Lee, Kim, Park & Park, 1996), agreed that addition of CeO2 
into YBCO will increase the critical current density to an extent at 77K, they reported 2x 104A/cm2 an increased by 
lowering the measuring temperature. (Solovyov, Bagarinao, Li, Si, Win, Zhou, Wiesmann & Qing, 2010), used 
active (001) Ceria (CeO2) buffer to modify the structure of the epitaxial high temperature superconductor YBCO 
which resulted with 0.8𝜇m thick film exhibiting strong enhancement of the critical current density of 4.2MA/cm2. 
(Feng et al., 2015), used CeO2 cap layers for high temperature superconducting, were YBCO films were 
epitaxially deposited on the as-growth CeO2/ YSZ (001) stack using water- free metal organic deposition (MOD) 
method to obtain 1.92MA/cm2 as Jc at 77K at 0.5Pa deposition pressure. 
Pulsed laser deposition (PLD) which is one of the physical deposition methods has been a promising technique 
for thin film growth and for fabricating nano-dimensional/nano-dots within epitaxial, textured or polycrystalline 
thin film matrices in recent years (Bhaumik et al., 2017; Haque, Pant and Narayan, 2018; Haque and Narayan, 
2018; Karnati, Haque, Taufique and Ghosh, 2018). In the present study, we have generated the nanostructures on 
LaAlO3 substrates by depositing YBCO and YBCO/CeO2 multilayer thin films. To investigate the effects of 
introducing nano dimensional CeO2 defects on (current density) Jc and the micro structure of YBCO. 
2. Experimental Procedure 
Several alternating layers of YBCO/CeO2 thin films were grown on single crystal LaAlO3 substrates using pulsed 
laser deposition technique. YBCO target of 99.9% with density of 5g/cm3 and 99.9% of CeO2 target, both were 
ordered from MTI corporation were used for this experiment. The substrate which is LaAlO  with orientation 
(100) and size of (10 × 10) and (5 × 5 )mm were used for the deposition, cleaned with acetone, methanol, and 
ethanol for 10 mins each, under ultrasonic to remove dirt and oil, after that the substrate was dropped inside 
hydrogen fluoride to also remove oil particle if there is any left and then dry. The deposition chamber was cleaned 
with acetone and methanol to remove dirt particle inside it. We then mounted the cleaned substrate on the holder 
with silver paste. Ablation was performed using KrF laser source of a wavelength 248nm.The ablation was done at 
(300) mJ of laser energy with a repetition of 5Hz. The aperture size was 12 x 4 mm2 and laser spot size was 1 x 4 
mm2. The target-substrate distance was maintained at 4cm. A based pressure of 10  Torr was maintained before 
the deposition; the deposited films were cooled down naturally in 600 mTorr of oxygen gas. To determine the 
optimum oxygen pressure for YBCO depositions, experiments were carried out at oxygen pressures of 400 mTorr. 
For this study three samples were chosen based on their yield and structural quality. They are identified as 50 
Pulses, 100 Pulses and 150 Pulses samples based on the number of laser pulses used for a layer of CeO2. The films 
were deposited on LaAlO3 single crystal substrates with (001) direction. Starting with YBCO followed by CeO2, 
10 layers of films were deposited for each sample tabulated below. 

 
Table 1. The multilayer deposition showing all the samples 

LAYER Sample I: 50 Pulses Sample 2: 100 Pulses Sample 3: 150 Pulses 
YBCO 1000 Pulses 1000 Pulses 1000 Pulses 
CeO2 50 Pulses 100 Pulses 150 Pulses 

YBCO 1000 Pulses 1000 Pulses 1000 Pulses 
CeO2 50 Pulses 100 Pulses 150 Pulses 

YBCO 1000 Pulses 1000 Pulses 1000 Pulses 
CeO2 50 Pulses 100 Pulses 150 Pulses 

YBCO 1000 Pulses 1000 Pulses 1000 Pulses 
CeO2 50 Pulses 100 Pulses 150 Pulses 

YBCO 1000 Pulses 1000 Pulses 1000 Pulses 
CeO2 50 Pulses 100 Pulses 150 Pulses 

 
2.1 Multilayer Deposition of YBCO/CeO2 

The 50 Pulses sample contains five layers of YBCO and 5 layers of CeO2. The difference between the three 
samples is differences in the thickness of the CeO2 layers. Single and multilayer samples were prepared using 
pulsed laser deposition. Also, a fourth sample of pure YBCO with 5000 pulses was made to be used for 
comparison of vital data such as the superconducting transition temperature and critical current density. The 
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The (00l) peaks in the XRD-spectra indicate that YBCO thin films are highly c-axis oriented, which is commonly 
observed and corresponds to the natural growth of the material. The XRD pattern from the YBCO and 
YBCO/CeO2 deposited on LaAlO3 at 850℃ and 300mTorr of oxygen pressure, is shown in figure 2. From the 
graph above we can observe that (00l) peaks are (001) at 7.56°, (002) at 15.18°, (003) at 23.7°, (004) at 31.2°, (005) 
at 38.5°, (006) at 47° . The peaks of the substrate were also observed with corresponding degrees at 23.5° and 
48.3°. All the samples of YBCO and YBCO/CeO2 was highly c-axis oriented with good sharp and strong peaks. 
The CeO2 appears in the graph below as an independent phase. The peak of CeO2 are observed only at 32.8° (200) 
orientation from the graph we can observe that the intensity increases as the number of pulses are added. The XRD 
pattern for the 50P YBCO/CeO2 was not resolvable, probably due to the small amount of the CeO2 size and low 
density. The presence of (00l) confirmed that the deposition parameters used for this work were good and suitable 
for the growth of YBCO on LAO substrates. No second phase such as Y2Cu2O and CuO were found in this case. 
Only YBCO and CeO2 phase was formed with a high intensity. From the XRD the oxygen deficiency was 
calculated for the samples using equation 1 (Coll, Gazque, Huhne, Holzapfel, Morilla, Lopez, Pomar, Sandimenge, 
Puig & Obradors, 2009), and the results are shown on Table 2. 
 
Oxygen deficiency calculated from c-axis c = 12.736 − 0.1501(7 − x) 
Or 

 x = ..    (1) 

Table 2. Oxygen deficiency calculated from c-axis  
Sample Name c- axis pattern (o) Oxygen deficiency(o) 

 Sample I (800℃) 11.7056 0.148 
 Sample II (825℃) 11.7053 0.133 
 Sample III (850℃) 11.7003 0.099 

Sample IV (50Pulses) 11.6978 0.083 
Sample V (100Pulses) 11.6958 0.063 
Sample VI (150Pulses) 11.6901 0.031 

 
The scanning electron microscopy (SEM) was performed on the samples, it revealed the surface morphologies of 
thin films. Figure 3 (a and b) shows the SEM image of pure YBCO and 50 pulses of YBCO/CeO2. Figure 3 (c and 
d) shows the SEM of the YBCO/CeO2 samples for (100 and 150) pulses respectively with nano dimensional 
defects, the pure YBCO reveals that they YBCO are well packed with long and extended grains randomly oriented 
in all direction with sizes vary from 1-5𝜇m. 

 D = .   (2) 

Where, D = Grain size, λ = Wavelength of X-ray used,  β =Full width at half maxima of the peak (FWHM) in radians, θ =Bragg's angle  
 
Table3. Calculated Crystalline size of CeO2 

Sample name Peak Width 2theta Theta Wavelength Grain Size 
50 pulses NIL NIL NIL 1.5406nm NIL 

100 pulses 0.881° 33.29° 16.64° 1.5406nm 1.64nm 
150 pulses 0.587° 33.12° 16.56° 1.5406nm 2.46nm 
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Figure 4. Magnetization Versus Transition Temperature (K) of all the sample, pure YBCO at different deposition 

temperature and (50, 100.150) pulses of YBCO/CeO2 at the same deposition temperature 
 
Table 4. List of samples details and their superconducting properties  

Sample Name Deposition 
Temperature ℃ 

Oxygen pressure 
(m Torr) 

Laser 
Energy(mJ) 

 T  (K) 

Sample I (YBCO) 800 400 300 87.2 
Sample II (YBCO) 825 400 300 89.0 
Sample III (YBCO) 850 400 300 91.1 

Sample IV YBCO/CeO2 (50Pulses) 850 400 300 92.0 
Sample V YBCO/CeO2 (100Pulses) 850 400 300 91.0 
Sample VI YBCO/CeO2 (150Pulses) 850 400 300 87 

 
Figure 5 shows Tc as a function of number of pulses for the onset transition temperature. From the plot, we can 
deduce that the Tc was high for Pure YBCO (0 pulses) and after the introduction of 50 pulses of CeO2 the Tc 
increased slightly. Similar changes were observed at 100 pulses and 150 pulses the Tc decreases as the number of 
pulses were added. This is a clear indication that the CeO2 defects were randomly introduced into superconducting 
matrix. Figure 6 shows that the obtained magnetic moment is in the emu units, which was converted to 
magnetization (emu/cm3) by dividing the magnetic moment by the volume of the sample. The area of the thin film 
sample was (2 x 2) mm2. The thickness of the film was maintained at 100nm for pure YBCO.  
The magnetic moment was obtained for the field swept from desired positive field to zero field and zero field to 
desired positive field. The value of the current density depends on several parameters including deposition 
temperature (TD), the number of pulses (P), external magnetic field (H) and the temperature at which it is measured 
(T). i.e Jc = (TD, P, H, T). (TD and P) are sample parameters that can be controlled during the sample growth. 
Keeping these two parameters fixed, Jc depends on H and T. The most determining sample condition for the value 
of Jc are the flux pinning centers introduced by the CeO2 nano dots and randomly distributed in the 
superconducting matrix, the pinned flux experiences forces because thermal fluctuations and the Lorentz force that 
lead to flux lattice melting. Using Bean’s formula, critical current density (J ), was calculated for pure YBCO and 
multilayer CeO  nano dimensional defect. Bean’s formula is given as (Matsuunoto, Horide, Osamura, Mukaida, 
Yoshida, Ichinose & Horii, 2004; Rejith, Vidya &Thomas, 2015; Zhao, Ito & Goto, 2014) 

 𝐉𝐜 = 𝟑𝟎 ∆𝐌 𝐚  (3) 
where ∆M is the difference of magnetization at a field, in emu/cm3, a is the area of the inscribed circle, in cm and J  is critical density in A/cm2. 
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Figure 5. Transition Temperature Versus Number of 

pulses of all the samples, Pure YBCO and (50,100,150) 
Pulses of YBCO/CeO2 

Figure 6. Magnetization Vs Magnetic field (hysteresis 
loop at 77K of 50 pulses) 

 
Figure 7. Current Density Versus Magnetic Field H(T) for Pure YBCO and (50,100,150) Pulses of YBCO/CeO2 

 
Figure 8 shows the plots of the current density J  against the field in Tesla, at 77K it explains that the 50 pulses of 
the YBCO/CeO2 in the multilayer gave highest Jc which was about 4.1 MA/cm2 this agrees with other report 
(Huang, Li, Wang, Qi, Sebastain, Haugan &Wang, 2017; Xu, Liu, Wang, Zhu, Zhu & Li, 2012; Lee, Kim, Park & 
Park, 1996; Feng, Zhang, Qu, Huang, Xiao, Zhu, Lu, Shi, &. Han, 2015) against the pure YBCO and we observed 
that the more CeO2 was added in the multilayer the less the Jc, and Tc we got, and this did not affect its structural 
properties. Table 5 below shows some current density of other literature which agree with our result. (Zhu, Wei, 
Yan, Tei, Jing, Liang, Bin, He &Wei, 2016). Figure 8 shows critical current density Jc as a function of measured 
temperature of all the samples.  

 
Figure 8. Current density Versus Measured Temperature (K) of all the samples at 10K, 50 K and 77K 
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Table 5. Comparing the current density with other literatures 
Literatures  Current Density at 77K 
 Huang et al. (2017) 4.66MA/cm2 
 Xu et al. (2012) 4.23MA/cm2 
 Lee et al. (1996) 2x104A/cm2 
 Solovyov et al. (2010) 4.2MA/cm2 

 
4. Conclusion 
In conclusion, we conclude that enhancing flux pinning in superconductors is central to improving their current 
carrying capability (Jc) and their ability to be used in magnetic fields but in this study only on 50 pulses that the Jc 
increases slightly, Unlike other superconducting parameters, such as critical Temperature (Tc) and critical 
magnetic field. Jc is not intrinsically limited to the material of system. In this work, the micro structure and critical 
current density o YBa Cu O  films have been found to improve very slightly with the introduction of nano 
dimensional multilayer CeO . Evidence from magnetic properties and XRD, shows that no second phase such as 
Y2Cu2O and CuO were found. Only YBCO and CeO2 phase were formed with a high intensity, while SEM shows 
that pure YBCO has long and extended grain randomly oriented in all direction with size vary from 1-5𝜇m with the 
grain very closely packed to each other. TEM analysis and X-ray diffraction texture analysis of CeO2 layers will be 
incorporated in the future work.  
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