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Abstract 
The electron magnetic moment anomaly is conventionally derived from the fine structure constant using a 
complex formula requiring over 13,000 evaluations. However, the charge of the electron is an important 
parameter of the Standard Model and could provide an enhanced basis for the derivation of the electron magnetic 
moment anomaly. This paper uses a geometric model to reformulate the equation for the electron’s charge, this is 
then used to determine a more accurate value for the electron magnetic moment anomaly from first geometric 
principles. This enhanced derivation uses a single evaluation, using a concise mathematical equation based on 
the natural log eπ. This geometric model will lead to further work to theoretically improve the understanding of 
the electron. 
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1. Introduction
In the Standard model (SM) the electron g factor is related to the electron magnetic moment to Bohr magneton 
ratio and the electron magnetic moment anomaly, by the following expression:  

/ 2 1e B eg aμ μ= − = + , (1) 
where g is the electron g factor, μe is the electron magnetic moment, μB is the Bohr magneton and ae is the 
electron magnetic moment anomaly.  
The g factor represents a small deviation in quantum mechanics from the equation for the Bohr magneton. For 
the g factor of the electron, the derivation in the Standard model (Hanneke, Fogwell, & Gabrielse, 2008), is 
given by: 
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 aμτ + ahadronic + aweak , (2) 

The principal term α  is the fine structure constant, and the first variable component C2 = ½. The conventional 
value for C4 and C6 for the electron, are computed analytically using the Riemann zeta function ( )xζ  (Laporta & 
Remiddi, 1996). 
The value for C8 is derived from a numerical integration technique, with 891 evaluations whose value has 
recently been revised to –1.9106 (20). Greater accuracy is achieved in the standard model with the further 
addition of C10 , using a similar numerical integration technique requiring a further 12,672 evaluations whose 
approximate value is 9.16 (58) (Aoyama, Hayakawa, Kinoshita, & Nio, 2012).  
Further adjusting the results using a number of 4th, 6th, 8th and 10th order mass-dependent terms, and the 
additional coupling factors, aμτ + ahadronic + aweak, brings the theoretical result, given to 13 d.p., as 
1.0011596521801 (Quint & Vogel, 2014). 
In this paper a more accurate value for the electron magnetic moment anomaly is derived, with a value to 13 d.p. 
of 1.0011596521807. This is in agreement with the most recent experimental value of 1.00115965218073 (28) 
(Quint & Vogel, 2014). This value is derived on an enhanced basis using an equation based on the charge of the 
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electron. A spherical model of the electron charge has previously been derived from the conventional equation 
for the charge of the electron (Worsley, 2011). Here, we use this equation to derive a single concise term for the 
electron magnetic moment anomaly, from first geometric principles using the natural log eπ . 
2. Methods 
All mathematical calculations follow strict standard algebraic and standard mathematical rules. The principal 
physics proofs are based upon standard physical formulae. The value used for Planck’s constant h = 
6.6260700408 x 10-34, is in accordance with the 2014 CODATA evaluation 6.626070040 (81) x 10-34 m2 kg/sec, 
The value used for α = 0.0072973525664 (17), is also taken from the 2014 CODATA evaluation. Derived values 
are given to 13 decimal places; intermediate values are given to 15 decimal places. 
3.1 Results: Reformulating the Electron Charge  
In the standard QED the charge of the electron is given as: 

 2
0 .2e hcε α=   (3) 

where e is electron charge, α is the fine structure constant, h is Planck's constant, c is the speed of light, and ε0 is 
the electric constant (permittivity of free space).  
The spherical symmetry of the electron charge is well recognized (Baldomir & Hammond, 2002; Haddad et al., 
2016). In a reformulation of the standard equation, the charge of the electron can be expressed as an equation in 
the form of a sphere (Worsley, 2011). The fractional quantum Hall effect indicates that the charge of the electron 
exists in multiples of 1/3e (Seiden, 2005; De-Picciotto et al., 1998; von Klitzing, Dorda, & Pepper, 1980; Tsui, 
Stormer, & Gossard, 1982). So, we can do this for three orthogonal dimensions x, y and z to give three 
orthogonal spheres. The volume within a sphere is 4/3 πr3, and for three spheres the volume would be 3 x 4/3 
πr3.  
Recent experimental design shows that matter in the form of electrons and positrons could be formed purely 
from E-M photons (Dennis, King, Jack, O’Holleran,, & Padgett, 2010; Pike, Mackenroth, Hill, & Rose, 2014). 
Here, it is shown that a threefold spherical model of the charge of the electron can be derived from the 
conventional equation for the electron charge, where the charge radius is dictated by the speed of light. Thus we 
can reformulate the standard equation to give the charge of the electron in terms of the volume of three spheres. 
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This equation can be simplified to the term 
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As we have used the conventional equation for the electron charge this agrees with the dimensions of the charge 
of the electron. So in Eq. (8), e has the dimensions of coulombs [C]. 

One important aspect of this equation is that the standard equation for the charge of the electron can be 
reformulated into two terms. The principal term derives from the volume of three spheres based on the speed of 

light and the electric constant ( ) xc
e

.3 3
3

4
0

π
ε= . The second term represents a small spin coefficient, x = 1/ 



apr.ccsenet.org Applied Physics Research Vol. 10, No. 6; 2018 

26 

8πhc4α = 1.018722648454255 (Intermediate values are given to 15 decimal point accuracy). Interestingly this 
spin coefficient can then be used to derive an entirely dimensionless term for the electron magnetic moment 
anomaly to a higher degree of accuracy, with a single equation, from first geometric principles using eπ. (see 
Section 3.2). 
3.2. Results Deriving the Electron Magnetic Moment Anomaly 
Here, the derivation of the electron magnetic moment anomaly can be enhanced using a reformulation of the 
conventional equation for the electron charge [Eqs. (4-8)]. This derivation yields a term from the electron spin 
coefficient x, given as x=1/8πhc4α. From here, using a straight forward mathematical cancellation technique, 
allows the derivation of an entirely dimensionless term for the electron magnetic moment anomaly.  
As the term x results from derivation of the charge of the electron squared, for the charge of a single electron the 
spin coefficient y, should be derived from the square root of x, hence:  

 12
1 −= xy   (9) 

This gives the numerical value for y = 0.00931793031444 to 15 decimal points. It is stressed that although the 
term x and in turn y have dimensions, it is possible to derive an equation which is dimensionless by using the 
term y/y, as in Eq. (10) below, thereby cancelling the dimensions.  
In accordance with particle gauge coupling (Evans, French, Jensen, & Threlfall, 2010), the ratio in curved space 
is (rw/r)8, gives the power ratio of the electron magnetic moment anomaly (1 + ae)8. Thus a far more straight 
forward and accurate dimensionless formula for the anomalous electron magnetic moment, can be derived:  
For the electron magnetic moment anomaly to 13 d.p. (ae): 
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yae  = 1.0011596521807,  (10) 

Conventionally this gives a dimensionless parameter, where the electron magnetic moment anomaly principally 
depends on the term y derived from conventional formula for the charge of the electron, and the natural log eπ.  
The CODATA experimental value for the electron magnetic moment to Bohr magneton ratio, given to 11 
decimal places is: 

Be μμ  = -1.00115965218. 
So the electron magnetic moment to Bohr magneton ratio is accurately related directly to a spin coefficient y, 
and eπ. The majority of the relative standard uncertainty (0.000 000 000 75) relates to the uncertainty in the value 
of Planck’s constant. Thus, far greater accuracy could be achieved for this equation [Eq. (11)], when Planck’s 
constant is known to a greater degree of accuracy. 
4. Discussion and Conclusion 
With direct concepts of geometry, it possible to enhance the derivation of the electron magnetic moment 
anomaly, from first principles using the term eπ.  Also known as Gelfond’s constant, eπ is a transcendental 
number with profound mathematical significance, where eπ represents the sum of all unit-ball volumes of even 
dimensions. 
In the standard model the Hamiltonian of an electron is 

 ( )21 ˆˆ ˆ ˆ ,
2

H p qA B
m

μ= − − ⋅   (11) 

where m is the mass of an electron, charge q, in a uniform static magnetic field B directed along the z-axis, 
ˆˆ
2
rA B= × is the vector potential and μ̂  is the intrinsic magnetic moment operator of the electron.  The 

magnetic moment μ̂  is related to the spin operator Ŝ  by ( ) ˆˆ 1 ,qa S
m

μ = +  where ,a  is called the 

electron magnetic moment anomaly (Basdevant & Dalibard, 2006). 
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Here, the electron magnetic moment anomaly is derived from first geometric principles using eπ. Firstly, the 
standard equation for the charge of the electron can be reformulated to form a spherical model of the electron 
charge. This reformulation of the elementary charge then yields an electron spin coefficient. From here, a single 
concise equation is used to derive the electron magnetic moment anomaly, to a greater degree of accuracy than 
current theory allows. As spin depends upon the dimension of time, the electron charge has spin in 4 dimensions, 
so the results are explained with geometry using eπ, representing the sum of all unit-ball volumes of even 
dimensions. 
In addition to the deep mathematical significance of eπ, it also appears that Planck’s constant h has a profound 
physical significance. Indeed Planck’s constant and the speed of light c  are intimately interconnected, not just 
with each other, but with the very nature of the electron and matter itself. Furthermore, it is possible to redefine a 
minimum quantum mass qm  by the equation 

 25 c
h

c
hG

G
hcmq =×= ,   (12) 

where G the gravitational constant cancels. This is also the equation for the standard Planck mass multiplied by 
Planck time. This minimum quantum mass mq can also be used to further explain the equations for quantum 
electrodynamics (Worsley, 2010). 
Overall, given that Planck’s constant is only accurately known to 9 decimal places, it represents a notable 
achievement to be able to obtain 13 decimal place accuracy compared to the known experimental values. Far 
greater accuracy than this could be achieved for these derivations, when Planck’s constant is known more 
accurately. These insights should lead to other work to improve the understanding of the electron. 
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